Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023113

RESUMO

A cross-coupling reaction via the dehydrogenative route over heterogeneous solid atomic catalysts offers practical solutions toward an economical and sustainable elaboration of simple organic substrates. The current utilization of this technology is, however, hampered by limited molecular definition of many solid catalysts. Here, we report the development of Cu-M dual-atom catalysts (where M = Co, Ni, Cu, and Zn) supported on a hierarchical USY zeolite to mediate efficient dehydrogenative cross-coupling of unprotected phenols with amine partners. Over 80% isolated yields have been attained over Cu-Co-USY, which shows much superior reactivity when compared with our Cu1 and other Cu-M analogues. This amination reaction has hence involved simple and non-forceful reaction condition requirements. The superior reactivity can be attributed to (1) the specifically designed bimetallic Cu-Co active sites within the micropore for "co-adsorption-co-activation" of the reaction substrates and (2) the facile intracrystalline (meso/micropore) diffusion of the heterocyclic organic substrates. This study offers critical insights into the engineering of next-generation solid atomic catalysts with complex reaction steps.

2.
Phys Chem Chem Phys ; 22(34): 18757-18764, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32149303

RESUMO

This article highlights the recent fundamental study in using achiral and chiral porous materials for the potential applications in asymmetric catalysis. Thanks to the new-generation synchrotron X-ray powder diffraction (SXRD) facilities, we reveal the presence of the unique 'chiral region' in achiral zeolites with the MFI topology. Both the inherent site-isolation effect of the active sites and internal confinement restraints in zeolites are critical for creating 'chiral regions' that can aid the design of more enantioselective catalytic reactions. We also offer an outlook on the challenges and opportunities of this research area.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa