Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172247, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599407

RESUMO

Creating ecosystem buffers in intertidal zones, such as seagrass meadows, has gained increasing attention as a nature-based solution for mitigating storm-driven coastal erosion. This study presents what-if scenarios using an integrated model framework to determine the effectiveness and strategies for planting seagrass to reduce coastal erosion. The framework comprises two levels of simulation packages. The first level is a regional-scale coupled hydrodynamic model that simulates the processes of a specific storm and provides boundary forces for the morphodynamic model XBeach to apply at the next level, which simulates nearshore morphological evolution. The framework is applied to the open coast of Norderney in the German Bight of the North Sea. We demonstrate that optimising the location and size of seagrass meadows is crucial to increase the efficiency of onshore sediment erosion mitigation. For a specific depth range, depending on the storm's intensity, the most significant reduction in erosion may not be achieved by starting the meadow at the depth that permits the largest meadow size. To maintain a significant coastal protection effect, seagrass density and stem height should be considered together, ensuring erosion reduction by at least 80 % compared to the unprotected coast. This study provides valuable insights for the design and implementation of seagrass transplantation as a nature-based solution, highlighting the importance of considering location, size, density, and stem height when using seagrass meadows for coastal protection.

2.
Environ Pollut ; 288: 117681, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284208

RESUMO

Microplastics (MP) are defined as synthetic organic pollutants sized <5 mm and have been recorded in various environments worldwide. Due to their small size, they pose a potential risk for many organisms throughout the food web. However, little is known about MP distribution patterns and associated transport mechanisms. Rivers may act as pathways for MP into marine environments. In this study, we investigate the occurrence of MP in the estuary and lower stretch of the second-largest German River, the Weser, representative of a significant interface between fresh water and marine environments. The aim of the study was to enhance the general understanding by providing novel, comprehensive data and suggestions for future studies on estuarine systems. Surface water samples of two different size classes were collected by ship using an on-board filtration system (11-500 µm fraction) and net sampling (500-5000 µm fraction). After a thorough sample preparation, all samples were analysed with Focal Plane Array (FPA) Fourier Transform Infrared (FTIR) spectroscopy and Attenuated Total Reflection (ATR) FTIR spectroscopy in order to obtain information on MP concentrations, polymer composition and size distribution. Our findings show highest concentrations in the 11-500 µm fraction (2.3 × 101 - 9.7 × 103 MP m-3), with the polymer cluster acrylates/polyurethanes(PUR)/varnish being dominant. The >500 µm fraction was dominated by polyethylene. Estimated MP concentrations generally increased in the Turbidity Maximum Zone (TMZ) and decreased towards the open sea. This study contributes to the current research by providing novel insights into the MP pollution of the estuary and lower stretch of an important European river and provides implications for future MP monitoring measures.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Estuários , Mar do Norte , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa