Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Spectrosc ; 61(5): 523-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17555622

RESUMO

Textile artifacts form a vital part of our cultural heritage. In order to determine appropriate methods of conservation, storage, and display, it is important to understand the current physical state of an artifact, as effected by the microstructure of the component fibers. The semi-crystalline nature of the constituent polymer aggregates, the degree of crystallinity, and the crystallite orientation have a significant influence on mechanical properties. The value of polarized Fourier transform infrared (FT-IR) spectroscopy in probing these aspects of cellulosic fibers has been assessed. A variety of representative fibers (both natural plant fibers and regenerated materials) were examined by polarized attenuated total reflection spectroscopy (Pol-ATR) and polarized infrared microspectroscopy (Pol-microIR); the former is a surface sampling technique and the latter is a transmission technique. The introduction of a polarizer into the system allows the alignment as well as the nature of bonds to be determined, and thus the presence and extent of crystallinity or long range ordering can be investigated. Using the data from the Pol-ATR experiments, it was found to be possible to derive the principle alignment of the cellulose polymer with respect to the fiber axis, along with an indication of the total cellulose crystallinity of the material, as measured by a crystallinity parameter, Chi. The Pol-microIR spectra, on the other hand, yielded more limited information, particularly when considering plant fibers with more complex microstructures.


Assuntos
Celulose/química , Celulose/ultraestrutura , Cristalografia/métodos , Refratometria/métodos , Espectrofotometria Infravermelho/métodos , Têxteis/análise , Conformação Molecular
2.
Appl Spectrosc ; 61(2): 218-22, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17331315

RESUMO

Given their ephemeral nature, the preservation of historic silks can be problematic. Rapid, on-site condition monitoring would offer significant benefits to conservators and museum curators concerned with continued access to collections. In this paper, near-infrared spectroscopy (NIR) is investigated as a noninvasive approach to the characterization of silk fabrics and particularly for determining the moisture content of silks as a potential age-related marker. Bands within the NIR spectrum of silk are assigned to contributions from water and the silk fibroin polymer. The water bands may be deconvolved to show separate contributions from bound and structural water. When silk is exposed to deuterium oxide, the water OH NIR bands are rapidly lost. The accompanying changes in the amide-related NIR absorptions reflect differential accessibility of regions within the semi-crystalline fibroin aggregate. NIR spectra were recorded while silk was maintained at a range of relative humidity; complementary gravimetry provided absolute reference data for moisture sorption. A single spectral parameter, the intensity of the water combination band, is sufficient to indicate the relative moisture content of silk and allows distinction of unaged and heat, light, and humidity aged silks. The results confirm that NIR has significant potential for on-site studies at collections in support of the preservation and access of our silk heritage.

3.
Appl Spectrosc ; 59(10): 1242-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16274537

RESUMO

When assessing historic textiles and considering appropriate conservation, display, and storage strategies, characterizing the physical condition of the textiles is essential. Our work has concentrated on developing nondestructive or micro-destructive methodologies that will permit this. Previously, we have demonstrated a correlation between the physical deterioration of unweighted and "pink" tin (IV) chloride weighted silk and certain measurable spectroscopic and chromatographic signatures, derived from polarized Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy (Pol-ATR) and high-performance liquid chromatography (HPLC) microsampling analyses. The application of the Pol-ATR technique to aged silk characterization has now been extended to include a more comprehensive range of weighting methods and aging regimes. This was intended to replicate the full spectrum of states of deterioration observed in silk textiles, from pristine to heavily degraded. Breaking strength was employed as a measure of the physical integrity of the fibers, and, as expected, decreased with aging. An orientational crystallinity parameter, reflecting the microstructural ordering of the fibroin polymer within the fibers, was derived from the Pol-ATR spectra. A good correlation was observed between the breaking strength of the variety of fibers and this parameter. This suggests that the physical state of historic silk fabrics might be adequately characterized for conservation purposes by such indirect micromethodology.


Assuntos
Seda/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Indústria Têxtil/história , Animais , Bombyx/química , Fibroínas/química , História Medieval , Teste de Materiais
4.
Photochem Photobiol ; 88(5): 1217-26, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22554154

RESUMO

The stability of silk proteins to ultraviolet light is an issue of significant concern in both the appearance retention of silk-derived products and the preservation of historic silk textiles. Until now, evaluation of silk degradation has only been performed at the holistic, rather than molecular level. This article describes the first proteomic profiling of silk photo-oxidation, characterizing protein primary level modification leading to coloration changes, and evaluating the effects of tin weighting on photodegradation. Heavy-chain fibroin, the main proteinaceous component of the silk thread, is a repetitive, highly crystalline protein with a content rich in tyrosine. Photoproducts of tyrosine were characterized and the levels of oxidative modification at the protein primary structural level correlated with changes in coloration and tensile strength. The effect of tin as a weighting agent used on historical fabrics was examined. Tin-weighted fabrics were evaluated following two treatments (pink and dynamite) and proteomic analysis revealed a significant increase in oxidatively modified amino acid residues within the pink-treated silk. These findings offer new insight into the molecular-level oxidation of silk proteins under UV exposure, and the effects of silk treatments in either exacerbating or ameliorating this degradation.


Assuntos
Fibroínas/análise , Proteômica/métodos , Têxteis/análise , Estanho/química , Tirosina/química , Sequência de Aminoácidos , Animais , Bombyx/fisiologia , Cromatografia Líquida , Cor , Fibroínas/química , Dados de Sequência Molecular , Oxirredução/efeitos da radiação , Fotólise , Espectrometria de Massas em Tandem , Resistência à Tração , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa