Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 628(8007): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538786

RESUMO

Antibody and chimeric antigen receptor (CAR) T cell-mediated targeted therapies have improved survival in patients with solid and haematologic malignancies1-9. Adults with T cell leukaemias and lymphomas, collectively called T cell cancers, have short survival10,11 and lack such targeted therapies. Thus, T cell cancers particularly warrant the development of CAR T cells and antibodies to improve patient outcomes. Preclinical studies showed that targeting T cell receptor ß-chain constant region 1 (TRBC1) can kill cancerous T cells while preserving sufficient healthy T cells to maintain immunity12, making TRBC1 an attractive target to treat T cell cancers. However, the first-in-human clinical trial of anti-TRBC1 CAR T cells reported a low response rate and unexplained loss of anti-TRBC1 CAR T cells13,14. Here we demonstrate that CAR T cells are lost due to killing by the patient's normal T cells, reducing their efficacy. To circumvent this issue, we developed an antibody-drug conjugate that could kill TRBC1+ cancer cells in vitro and cure human T cell cancers in mouse models. The anti-TRBC1 antibody-drug conjugate may provide an optimal format for TRBC1 targeting and produce superior responses in patients with T cell cancers.


Assuntos
Imunoconjugados , Leucemia de Células T , Linfoma de Células T , Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Animais , Feminino , Humanos , Camundongos , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Imunoterapia Adotiva , Leucemia de Células T/tratamento farmacológico , Leucemia de Células T/imunologia , Linfoma de Células T/tratamento farmacológico , Linfoma de Células T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Prostate ; 81(15): 1159-1171, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34402095

RESUMO

BACKGROUND: Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new preclinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration-resistant prostate cancer. METHODS: We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) and proteomic analyses (SWATH-MS) to delineate expression differences between castration-sensitive and castration-resistant cell lines. Furthermore, we characterized the in vivo and in vitro growth characteristics of these novel cell line models. RESULTS: The two cell line derivatives LAPC4-CR and VCaP-CR showed castration-resistant growth in vitro and in vivo which was only minimally inhibited by AR antagonists, enzalutamide, and bicalutamide. High-dose androgen treatment resulted in significant growth arrest of VCaP-CR but not in LAPC4-CR cells. Both cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration-resistant LNCaP-abl cells revealed an expression signature of castration resistance. CONCLUSIONS: The two novel cell line models LAPC4-CR and VCaP-CR and their comprehensive characterization on the RNA and protein level represent important resources to study the molecular mechanisms of castration resistance.


Assuntos
Neoplasias de Próstata Resistentes à Castração/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Fenótipo
3.
Prostate ; 74(1): 61-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24115205

RESUMO

BACKGROUND: The goal of the Prostate Cancer Biorepository Network (PCBN) is to develop a biorepository with high-quality, well-annotated specimens obtained in a systematic, reproducible fashion using optimized and standardized protocols, and an infrastructure to facilitate the growth of the resource and its wide usage by the prostate cancer research community. An emerging area of concern in the field of prostate cancer biobanking is an apparent shift in the proportion of surgical procedures performed for prostate cancer treatment from radical retropubic prostatectomy (RRP) to robot-assisted laparoscopic prostatectomy (RALP). Our study aimed to determine the potential impact of the RALP procedure on the detection of known prostate cancer biomarkers, and the subsequent suitability of RALP-derived specimens for prostate cancer biomarker studies. METHODS: DNA and RNA were extracted from RRP and RALP specimens. Quality assessment was conducted using spectrophotometric analysis and RNA was analyzed for RNA integrity number (RIN) and by real-time reverse-transcription PCR (qRT-PCR) for racemase, hepsin, ERG, TMPRSS2-ERG gene fusions, and the microRNAs miR-26a, miR-26b, miR-141, and miR-221. RESULTS: We demonstrate that extraction of derivatives from frozen tissues from RRP and RALP specimens yields samples of equally high quality as assessed by spectrophotometric and RIN analysis. Likewise, expression levels of genes analyzed by qRT-PCR did not differ between RRP and RALP-derived tissues. CONCLUSIONS: Our studies indicate that samples obtained from RALP specimens may be suitable for prostate cancer biomarker studies-an important finding given the current shift in surgical procedures for prostate cancer treatment.


Assuntos
Laparoscopia/métodos , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Robótica/métodos , Bancos de Tecidos , Idoso , Humanos , Laparoscopia/normas , Masculino , Pessoa de Meia-Idade , Prostatectomia/normas , Robótica/normas , Bancos de Tecidos/normas
4.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38234817

RESUMO

Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary: Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.

5.
Sci Transl Med ; 16(755): eadg7123, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985855

RESUMO

Two types of engineered T cells have been successfully used to treat patients with cancer, one with an antigen recognition domain derived from antibodies [chimeric antigen receptors (CARs)] and the other derived from T cell receptors (TCRs). CARs use high-affinity antigen-binding domains and costimulatory domains to induce T cell activation but can only react against target cells with relatively high amounts of antigen. TCRs have a much lower affinity for their antigens but can react against target cells displaying only a few antigen molecules. Here, we describe a new type of receptor, called a Co-STAR (for costimulatory synthetic TCR and antigen receptor), that combines aspects of both CARs and TCRs. In Co-STARs, the antigen-recognizing components of TCRs are replaced by high-affinity antibody fragments, and costimulation is provided by two modules that drive NF-κB signaling (MyD88 and CD40). Using a TCR-mimic antibody fragment that targets a recurrent p53 neoantigen presented in a common human leukocyte antigen (HLA) allele, we demonstrate that T cells equipped with Co-STARs can kill cancer cells bearing low densities of antigen better than T cells engineered with conventional CARs and patient-derived TCRs in vitro. In mouse models, we show that Co-STARs mediate more robust T cell expansion and more durable tumor regressions than TCRs similarly modified with MyD88 and CD40 costimulation. Our data suggest that Co-STARs may have utility for other peptide-HLA antigens in cancer and other targets where antigen density may limit the efficacy of engineered T cells.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Humanos , Animais , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Transdução de Sinais
6.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546808

RESUMO

Nearly 30% of Pancreatic ductal adenocarcinoma (PDAC)s exhibit a marked overexpression of Monocarboxylate Transporter 1 (MCT1) offering a unique opportunity for therapy. However, biochemical inhibitors of MCT1 have proven unsuccessful in clinical trials. In this study we present an alternative approach using 3-Bromopyruvate (3BP) to target MCT1 overexpressing PDACs. 3BP is a cytotoxic agent that is known to be transported into cells via MCT1, but its clinical usefulness has been hampered by difficulties in delivering the drug systemically. We describe here a novel microencapsulated formulation of 3BP (ME3BP-7), that is effective against a variety of PDAC cells in vitro and remains stable in serum. Furthermore, systemically administered ME3BP-7 significantly reduces pancreatic cancer growth and metastatic spread in multiple orthotopic models of pancreatic cancer with manageable toxicity. ME3BP-7 is, therefore, a prototype of a promising new drug, in which the targeting moiety and the cytotoxic moiety are both contained within the same single small molecule. One Sentence Summary: ME3BP-7 is a novel formulation of 3BP that resists serum degradation and rapidly kills pancreatic cancer cells expressing high levels of MCT1 with tolerable toxicity in mice.

7.
iScience ; 25(6): 104437, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35692635

RESUMO

We describe the creation of an isogenic cell line panel representing common cancer pathways, with features optimized for high-throughput screening. More than 1,800 cell lines from three normal human cell lines were generated using CRISPR technologies. Surprisingly, most of these lines did not result in complete gene inactivation despite integration of sgRNA at the desired genomic site. A subset of the lines harbored biallelic disruptions of the targeted tumor suppressor gene, yielding a final panel of 100 well-characterized lines covering 19 frequently lost cancer pathways. This panel included genetic markers optimized for sequence-based ratiometric assays for drug-based screening assays. To illustrate the potential utility of this panel, we developed a high-throughput screen that identified Wee1 inhibitor MK-1775 as a selective growth inhibitor of cells with inactivation of TP53. These cell lines and screening approach should prove useful for researchers studying a variety of cellular and biochemical phenomena.

8.
Sci Transl Med ; 14(673): eabq6146, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449602

RESUMO

Inactivation of the tumor suppressor genes tumor protein p53 (TP53) and cyclin-dependent kinase inhibitor 2A (CDKN2A) occurs early during gastroesophageal junction (GEJ) tumorigenesis. However, because of a paucity of GEJ-specific disease models, cancer-promoting consequences of TP53 and CDKN2A inactivation at the GEJ have not been characterized. Here, we report the development of a wild-type primary human GEJ organoid model and a CRISPR-edited transformed GEJ organoid model. CRISPR-Cas9-mediated TP53 and CDKN2A knockout (TP53/CDKN2AKO) in GEJ organoids induced morphologic dysplasia and proneoplastic features in vitro and tumor formation in vivo. Lipidomic profiling identified several platelet-activating factors (PTAFs) among the most up-regulated lipids in CRISPR-edited organoids. PTAF/PTAF receptor (PTAFR) abrogation by siRNA knockdown or a pharmacologic inhibitor (WEB2086) reduced proliferation and other proneoplastic features of TP53/CDKN2AKO GEJ organoids in vitro and tumor formation in vivo. In addition, murine xenografts of Eso26, an established human esophageal adenocarcinoma cell line, were suppressed by WEB2086. Mechanistically, TP53/CDKN2A dual inactivation disrupted both the transcriptome and the DNA methylome, likely mediated by key transcription factors, particularly forkhead box M1 (FOXM1). FOXM1 activated PTAFR transcription by binding to the PTAFR promoter, further amplifying the PTAF-PTAFR pathway. Together, these studies established a robust model system for investigating early GEJ neoplastic events, identified crucial metabolic and epigenomic changes occurring during GEJ model tumorigenesis, and revealed a potential cancer therapeutic strategy. This work provides insights into proneoplastic mechanisms associated with TP53/CDKN2A inactivation in early GEJ neoplasia, which may facilitate early diagnosis and prevention of GEJ neoplasms.


Assuntos
Organoides , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Junção Esofagogástrica , Carcinogênese , Transformação Celular Neoplásica , Inibidor p16 de Quinase Dependente de Ciclina/genética
9.
Proc Natl Acad Sci U S A ; 105(25): 8713-7, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18552176

RESUMO

Oncogenic activation of tyrosine kinases is a common mechanism of carcinogenesis and, given the druggable nature of these enzymes, an attractive target for anticancer therapy. Here, we show that somatic mutations of the fibroblast growth factor receptor 2 (FGFR2) tyrosine kinase gene, FGFR2, are present in 12% of endometrial carcinomas, with additional instances found in lung squamous cell carcinoma and cervical carcinoma. These FGFR2 mutations, many of which are identical to mutations associated with congenital craniofacial developmental disorders, are constitutively activated and oncogenic when ectopically expressed in NIH 3T3 cells. Inhibition of FGFR2 kinase activity in endometrial carcinoma cell lines bearing such FGFR2 mutations inhibits transformation and survival, implicating FGFR2 as a novel therapeutic target in endometrial carcinoma.


Assuntos
Carcinoma/genética , Neoplasias do Endométrio/genética , Mutação , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Animais , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Feminino , Camundongos , Células NIH 3T3 , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transfecção
10.
Oncotarget ; 10(32): 3040-3050, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31105884

RESUMO

DNA methylation can mediate epigenetic silencing of tumor suppressor and cancer protective genes. The protein ubiquitin-like containing PHD and ring finger domains 1 (UHRF1) is an essential component in cells for DNA methylation maintenance. The SET- and RING-associated (SRA) domain of UHRF1 can bind hemimethylated DNA, and mediate recruitment of DNA methyltransferases to copy the methylation pattern to the newly synthesized daughter strand. Loss of UHRF1 function can lead to demethylation and re-expression of epigenetically silenced tumor suppressor genes and can reduce cancer cell growth and survival. We created a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) assay to screen for inhibitors capable of disrupting the interaction between the UHRF1-SRA domain and hemimethylated DNA. Using this assay (Z' factor of 0.74 in 384-well format) we screened the Library of Pharmacologically Active Compounds (LOPAC) for UHRF1-SRA inhibitors, and validated 7 hit compounds. These compounds included the anthracycline derivatives idarubicin and mitoxantrone, which are commonly used chemotherapeutic drugs known to mediate cytotoxicity by acting as class II topoisomerase (TOP2) poisons. In a panel of additional known topoisomerase poisons, only the anthracycline derivatives showed dose responsive inhibition of UHRF1-SRA. Additionally, mitoxantrone and doxorubicin showed dose-responsive global DNA demethylation and demonstrated a synergistic growth inhibition of multiple cancer cell lines when combined with the DNA methyltransferase (DNMT) inhibitor decitabine. These data validate a novel TR-FRET assay for identification of UHRF1 inhibitors, and revealed unexpected epigenetic properties of commonly used chemotherapeutic drugs that showed synergistic cytotoxicity of cancer cells when combined with a demethylating agent.

11.
Nat Commun ; 8(1): 142, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747635

RESUMO

A defining hallmark of primary and metastatic cancers is the migration and invasion of malignant cells. These invasive properties involve altered dynamics of the cytoskeleton and one of its major structural components ß-actin. Here we identify AIM1 (absent in melanoma 1) as an actin-binding protein that suppresses pro-invasive properties in benign prostate epithelium. Depletion of AIM1 in prostate epithelial cells increases cytoskeletal remodeling, intracellular traction forces, cell migration and invasion, and anchorage-independent growth. In addition, decreased AIM1 expression results in increased metastatic dissemination in vivo. AIM1 strongly associates with the actin cytoskeleton in prostate epithelial cells in normal tissues, but not in prostate cancers. In addition to a mislocalization of AIM1 from the actin cytoskeleton in invasive cancers, advanced prostate cancers often harbor AIM1 deletion and reduced expression. These findings implicate AIM1 as a key suppressor of invasive phenotypes that becomes dysregulated in primary and metastatic prostate cancer.


Assuntos
Actinas/metabolismo , Movimento Celular , Cristalinas/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cristalinas/genética , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Invasividade Neoplásica , Micrometástase de Neoplasia , Neoplasias da Próstata/genética , Neoplasias da Próstata/ultraestrutura , Ligação Proteica , Interferência de RNA , Transplante Heterólogo
12.
J Biomol Screen ; 19(7): 1060-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24608100

RESUMO

Methylated DNA binding proteins such as Methyl-CpG Binding Domain Protein 2 (MBD2) can transduce DNA methylation alterations into a repressive signal by recruiting transcriptional co-repressor complexes. Interfering with MBD2 could lead to reactivation of tumor suppressor genes and therefore represents an attractive strategy for epigenetic therapy. We developed and compared fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET)-based high-throughput screening (HTS) assays to identify small-molecule inhibitors of the interaction between the methyl binding domain of MBD2 (MBD2-MBD) and methylated DNA. Although both assays performed well in 96-well format, the TR-FRET assay (Z' factor = 0.58) emerged as a superior screening strategy compared with FP (Z' factor = 0.08) when evaluated in an HTS 384-well plate format. Using TR-FRET, we screened the Sigma LOPAC library for MBD2-MBD inhibitors and identified four compounds that also validated in a dose-response series. This included two known DNA intercalators (mitoxantrone and idarubicin) among two other inhibitory compounds (NF449 and aurintricarboxylic acid). All four compounds also inhibited the binding of SP-1, a transcription factor with a GC-rich binding sequence, to a methylated oligonucleotide, demonstrating that the activity was nonspecific. Our results provide proof of principle for using TR-FRET-based HTS to identify small-molecule inhibitors of MBD2 and other DNA-protein interactions.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Transferência Ressonante de Energia de Fluorescência/métodos , Ácido Aurintricarboxílico/química , Benzenossulfonatos/química , DNA/química , Metilação de DNA , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala/métodos , Humanos , Idarubicina/química , Mitoxantrona/química , Oligonucleotídeos/química , Ligação Proteica , Fator de Transcrição Sp1/química
13.
Nat Biotechnol ; 36(9): 900-902, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30188527
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa