Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Neoplasia ; 21(2): 185-196, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30591423

RESUMO

Cell lines are essential tools to standardize and compare experimental findings in basic and translational cancer research. The current dogma states that cancer stem cells feature an increased tumor initiation capacity and are also chemoresistant. Here, we identified and comprehensively characterized three morphologically distinct cellular subtypes in the non-small cell lung cancer cell line A549 and challenge the current cancer stem cell dogma. Subtype-specific cellular morphology is maintained during short-term culturing, resulting in the formation of holoclonal, meroclonal, and paraclonal colonies. A549 holoclone cells were characterized by an epithelial and stem-like phenotype, paraclone cells featured a mesenchymal phenotype, whereas meroclone cells were phenotypically intermediate. Cell-surface marker expression of subpopulations changed over time, indicating an active epithelial-to-mesenchymal transition (EMT), in vitro and in vivo. EMT has been associated with the overexpression of the immunomodulators PD-L1 and PD-L2, which were 37- and 235-fold overexpressed in para- versus holoclone cells, respectively. We found that DNA methylation is involved in epigenetic regulation of marker expression. Holoclone cells were extremely sensitive to cisplatin and radiotherapy in vitro, whereas paraclone cells were highly resistant. However, inhibition of the receptor tyrosine kinase AXL, whose expression is associated with an EMT, specifically targeted the otherwise highly resistant paraclone cells. Xenograft tumor formation capacity was 24- and 269-fold higher in holo- than mero- and paraclone cells, respectively. Our results show that A549 subpopulations might serve as a unique system to explore the network of stemness, cellular plasticity, tumor initiation capacity, invasive and metastatic potential, and chemo/radiotherapy resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/metabolismo , Células A549 , Animais , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Dano ao DNA , Metilação de DNA , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Células-Tronco Neoplásicas/patologia , Transcriptoma
3.
Sci Data ; 5: 180170, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30129933

RESUMO

Mice are used universally as model organisms for studying heart physiology, and a plethora of genetically modified mouse models exist to study cardiac disease. Transcriptomic data for whole-heart tissue are available, but not yet for isolated ventricular cardiomyocytes. Our lab therefore collected comprehensive RNA-seq data from wildtype murine ventricular cardiomyocytes as well as from knockout models of the ion channel regulators CASK, dystrophin, and SAP97. We also elucidate ion channel expression from wild-type cells to help forward the debate about which ion channels are expressed in cardiomyocytes. Researchers studying the heart, and especially cardiac arrhythmias, may benefit from these cardiomyocyte-specific transcriptomic data to assess expression of genes of interest.

4.
Sci Data ; 5: 180216, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30299437

RESUMO

This corrects the article DOI: 10.1038/sdata.2018.170.

5.
NPJ Vaccines ; 3: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30302283

RESUMO

Inactivated vaccines lack immunogenicity and therefore require potent adjuvants. To understand the in vivo effects of adjuvants, we used a system immunology-based analysis of ovine blood transcriptional modules (BTMs) to dissect innate immune responses relating to either antibody or haptoglobin levels. Using inactivated foot-and-mouth disease virus as an antigen, we compared non-adjuvanted to liposomal-formulated vaccines complemented or not with TLR4 and TLR7 ligands. Early after vaccination, BTM relating to myeloid cells, innate immune responses, dendritic cells, and antigen presentation correlated positively, whereas BTM relating to T and natural killer cells, as well as cell cycle correlated negatively with antibody responses. Interestingly, similar BTM also correlated with haptoglobin, but in a reversed manner, indicating that acute systemic inflammation is not beneficial for early antibody responses. Analysis of vaccine-dependent BTM modulation showed that liposomal formulations induced similar responses to those correlating to antibody levels. Surprisingly, the addition of the TLR ligands appeared to reduce early immunological perturbations and mediated anti-inflammatory effects, despite promoting antibody responses. When pre-vaccination BTM were analyzed, we found that high vaccine responders expressed higher levels of many BTM relating to cell cycle, antigen-presenting cells, and innate responses as compared with low responders. In conclusion, we have transferred human BTM to sheep and identified early vaccine-induced responses associated with antibody levels or unwanted inflammation in a heterogeneous and small group of animals. Such readouts are applicable to other veterinary species and very useful to identify efficient vaccine adjuvants, their mechanism of action, and factors related to low responders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa