Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2313981121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412129

RESUMO

Real-time characterization of microresonator dynamics is important for many applications. In particular, it is critical for near-field sensing and understanding light-matter interactions. Here, we report camera-facilitated imaging and analysis of standing wave patterns in optical ring resonators. The standing wave pattern is generated through bidirectional pumping of a microresonator, and the scattered light from the microresonator is collected by a short-wave infrared (SWIR) camera. The recorded scattering patterns are wavelength dependent, and the scattered intensity exhibits a linear relation with the circulating power within the microresonator. By modulating the relative phase between the two pump waves, we can control the generated standing waves' movements and characterize the resonator with the SWIR camera. The visualized standing wave enables subwavelength distance measurements of scattering targets with nanometer-level accuracy. This work opens broad avenues for applications in on-chip near-field (bio)sensing, real-time characterization of photonic integrated circuits, and backscattering control in telecom systems.

2.
Opt Express ; 31(6): 10794-10804, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157618

RESUMO

The time-dependent Mandel Q parameter, Q(T), provides a measure of photon number variance for a light source as a function of integration time. Here, we use Q(T) to characterise single photon emission from a quantum emitter in hexagonal boron nitride (hBN). Under pulsed excitation a negative Q parameter was measured, indicating photon antibunching at an integration time of 100 ns. For larger integration times Q is positive and the photon statistics become super-Poissonian, and we show by comparison with a Monte Carlo simulation for a three-level emitter that this is consistent with the effect of a metastable shelving state. Looking towards technological applications for hBN single photon sources, we propose that Q(T) provides valuable information on the intensity stability of single photon emission. This is useful in addition to the commonly used g(2)(τ) function for the complete characterisation of a hBN emitter.

3.
Small ; 18(15): e2107597, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218293

RESUMO

On-chip silicon microcavity sensors are advantageous for the detection of virus and biomolecules due to their compactness and the enhanced light-matter interaction with the analyte. While their theoretical sensitivity is at the single-molecule level, the fabrication of high quality (Q) factor silicon cavities and their integration with optical couplers remain as major hurdles in applications such as single virus detection. Here, label-free single virus detection using silicon photonic crystal random cavities is proposed and demonstrated. The sensor chips consist of free-standing silicon photonic crystal waveguides and do not require pre-fabricated defect cavities or optical couplers. Residual fabrication disorder results in Anderson-localized cavity modes which are excited by a free space beam. The Q ≈105 is sufficient for observing discrete step-changes in resonance wavelength for the binding of single adenoviruses (≈50 nm radius). The authors' findings point to future applications of CMOS-compatible silicon sensor chips supporting Anderson-localized modes that have detection capabilities at the level of single nanoparticles and molecules.


Assuntos
Nanopartículas , Silício , Óptica e Fotônica , Fótons , Silício/química
4.
Appl Opt ; 51(12): 1872-8, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22534891

RESUMO

As three-plane waves are the minimum number required for the formation of vortex-embedded lattice structures by plane wave interference, we present our experimental investigation on the formation of complex 3D photonic vortex lattice structures by a designed superposition of multiples of phase-engineered three-plane waves. The unfolding of the generated complex photonic lattice structures with higher order helical phase is realized by perturbing the superposition of a relatively phase-encoded, axially equidistant multiple of three noncoplanar plane waves. Through a programmable spatial light modulator assisted single step fabrication approach, the unfolded 3D vortex lattice structures are experimentally realized, well matched to our computer simulations. The formation of higher order intertwined helices embedded in these 3D spiraling vortex lattice structures by the superposition of the multiples of phase-engineered three-plane waves interference is also studied.

5.
Opt Lett ; 36(3): 403-5, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21283204

RESUMO

We present a novel single-step fabrication approach, based on optical phase engineering, for tunable complex photonic chiral lattices of diverse geometries in a large area. By means of engineered reconfigurable phase patterns, we computationally simulate as well as experimentally investigate these complex structures. We show the generation of both periodic right- and left-handed chiral structures as well as photonic transversely quasi-crystallographic chiral structures. These complex chiral lattices are also demonstrated in a photorefractive material, and the lattice formation is analyzed by plane-wave-guided imaging as well as diffraction pattern imaging. Furthermore, complex photonic chiral structures with engineered tunable relative phase shifts between adjacent spiral units realizable in a single step are explored and analyzed.

6.
Opt Lett ; 36(17): 3512-4, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21886261

RESUMO

We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

7.
Opt Lett ; 34(17): 2625-7, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19724512

RESUMO

We experimentally investigate the formation of reconfigurable three-dimensional (3D) nonlinear photonic lattices in an externally biased cerium doped strontium barium niobate photorefractive crystal by a spatial light modulator-assisted versatile simplified single step optical induction approach. The analysis of the generated 3D nonlinear photonic lattices by plane wave guiding, momentum space spectroscopy, and far field diffraction pattern imaging is presented, which points to the embedded potential of these 3D structures as reconfigurable platform to investigate advanced nonlinear light-matter interaction in periodic structures.

8.
Adv Mater ; 30(51): e1801246, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30073717

RESUMO

Label-free optical sensor systems have emerged that exhibit extraordinary sensitivity for detecting physical, chemical, and biological entities at the micro/nanoscale. Particularly exciting is the detection and analysis of molecules, on miniature optical devices that have many possible applications in health, environment, and security. These micro- and nanosensors have now reached a sensitivity level that allows for the detection and analysis of even single molecules. Their small size enables an exceedingly high sensitivity, and the application of quantum optical measurement techniques can allow the classical limits of detection to be approached or surpassed. The new class of label-free micro- and nanosensors allows dynamic processes at the single-molecule level to be observed directly with light. By virtue of their small interaction length, these micro- and nanosensors probe light-matter interactions over a dynamic range often inaccessible by other optical techniques. For researchers entering this rapidly advancing field of single-molecule micro- and nanosensors, there is an urgent need for a timely review that covers the most recent developments and that identifies the most exciting opportunities. The focus here is to provide a summary of the recent techniques that have either demonstrated label-free single-molecule detection or claim single-molecule sensitivity.


Assuntos
Microtecnologia/instrumentação , Nanotecnologia/instrumentação , Fenômenos Ópticos
9.
Sci Rep ; 6: 38744, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941869

RESUMO

Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 µm thick large area LPC Si film on nanoimprinted substrates.

10.
Sci Rep ; 6: 25135, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113674

RESUMO

Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported.

11.
Appl Opt ; 47(12): 1973-80, 2008 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18425169

RESUMO

We make use of a dual beam multiple-exposure (DBME) holographic technique for the formation of all 14 Bravais lattices of three-dimensional photonic crystal microstructures. For simplicity of experimental implementation, the DBME method has been modified such that, prior to each exposure, once the proper angle between the wave vectors of the interfering beams is chosen, a single axis rotation of the recording medium gives the desired results. The parameters required for the generation of the lattice structures have been derived by appropriate modification of interference of four noncoplanar beams (IFNB) analysis for corresponding implementation in the DBME technique, and the results have been verified by computer simulations. After giving a comparative study of the results with the IFNB method, recording geometries for the DBME approach are also proposed in order to realize all 14 Bravais lattices experimentally.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa