Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Alzheimers Dement ; 20(5): 3687-3695, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574400

RESUMO

INTRODUCTION: Cerebral small vessel disease (SVD) and amyloid beta (Aß) pathology frequently co-exist. The impact of concurrent pathology on the pattern of hippocampal atrophy, a key substrate of memory impacted early and extensively in dementia, remains poorly understood. METHODS: In a unique cohort of mixed Alzheimer's disease and moderate-severe SVD, we examined whether total and regional neuroimaging measures of SVD, white matter hyperintensities (WMH), and Aß, as assessed by 18F-AV45 positron emission tomography, exert additive or synergistic effects on hippocampal volume and shape. RESULTS: Frontal WMH, occipital WMH, and Aß were independently associated with smaller hippocampal volume. Frontal WMH had a spatially distinct impact on hippocampal shape relative to Aß. In contrast, hippocampal shape alterations associated with occipital WMH spatially overlapped with Aß-vulnerable subregions. DISCUSSION: Hippocampal degeneration is differentially sensitive to SVD and Aß pathology. The pattern of hippocampal atrophy could serve as a disease-specific biomarker, and thus guide clinical diagnosis and individualized treatment strategies for mixed dementia.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doenças de Pequenos Vasos Cerebrais , Hipocampo , Tomografia por Emissão de Pósitrons , Humanos , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Masculino , Idoso , Feminino , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Atrofia/patologia , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Neuroimagem , Estudos de Coortes
2.
Brain ; 145(8): 2806-2822, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34919633

RESUMO

Early degeneration of basal forebrain cholinergic neurons contributes substantially to cognitive decline in Alzheimer's disease. Evidence from preclinical models of neuronal injury and aging support a pivotal role for nerve growth factor (NGF) in neuroprotection, resilience, and cognitive function. However, whether NGF can provide therapeutic benefit in the presence of Alzheimer's disease-related pathologies still unresolved. Perturbations in the NGF signalling system in Alzheimer's disease may render neurons unable to benefit from NGF administration. Additionally, challenges related to brain delivery remain for clinical translation of NGF-based therapies in Alzheimer's disease. To be safe and efficient, NGF-related agents should stimulate the NGF receptor, tropomyosin receptor kinase A (TrkA), avoid activation through the p75 neurotrophin receptor (p75NTR), and be delivered non-invasively to targeted brain areas using real-time monitoring. We addressed these limitations using MRI-guided focused ultrasound (MRIgFUS) to increase blood-brain barrier permeability locally and transiently, allowing an intravenously administered TrkA agonist that does not activate p75NTR, termed D3, to enter targeted brain areas. Here, we report the therapeutic potential of selective TrkA activation in a transgenic mouse model that recapitulates numerous Alzheimer's disease-associated pathologies. Repeated MRIgFUS-mediated delivery of D3 (D3/FUS) improved cognitive function in the TgCRND8 model of Alzheimer's disease. Mechanistically, D3/FUS treatment effectively attenuated cholinergic degeneration and promoted functional recovery. D3/FUS treatment also resulted in widespread reduction of brain amyloid pathology and dystrophic neurites surrounding amyloid plaques. Furthermore, D3/FUS markedly enhanced hippocampal neurogenesis in TgCRND8 mice, implicating TrkA agonism as a novel therapeutic target to promote neurogenesis in the context of Alzheimer's disease-related pathology. Thus, this study provides evidence that selective TrkA agonism confers neuroprotection to effectively counteract Alzheimer's disease-related vulnerability. Recent clinical trials demonstrate that non-invasive blood-brain barrier modulation using MRIgFUS is safe, feasible and reversible in Alzheimer's disease patients. TrkA receptor agonists coupled with MRIgFUS delivery constitute a promising disease-modifying strategy to foster brain health and counteract cognitive decline in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Fator de Crescimento Neural , Animais , Neurônios Colinérgicos , Camundongos , Neuroproteção , Receptor de Fator de Crescimento Neural , Receptor trkA , Tropomiosina
3.
Mov Disord ; 33(10): 1567-1579, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30264465

RESUMO

BACKGROUND: The characteristic progression of Lewy pathology in Parkinson's disease likely involves intercellular exchange and the accumulation of misfolded α-synuclein amplified by a prion-like self-templating mechanism. Silencing of the α-synuclein gene could provide long-lasting disease-modifying benefits by reducing the requisite substrate for the spreading aggregation. OBJECTIVES: As a result of the poor penetration of viral vectors across the blood-brain barrier, gene therapy for central nervous system disorders requires direct injections into the affected brain regions, and invasiveness is further increased by the need for bilateral delivery to multiple brain regions. Here we test a noninvasive approach by combining low-intensity magnetic resonance-guided focused ultrasound and intravenous microbubbles that can transiently increase the access of brain impermeant therapeutic macromolecules to targeted brain regions. METHODS: Transgenic mice expressing human α-synuclein were subjected to magnetic resonance-guided focused ultrasound targeted to 4 brain regions (hippocampus, substantia nigra, olfactory bulb, and dorsal motor nucleus) in tandem with intravenous microbubbles and an adeno-associated virus serotype 9 vector bearing a short hairpin RNA sequence targeting the α-synuclein gene. RESULTS: One month following treatment, α-synuclein immunoreactivity was decreased in targeted brain regions, whereas other neuronal markers such as synaptophysin or tyrosine hydroxylase were unchanged, and cell death and glial activation remained at basal levels. CONCLUSIONS: These results demonstrate that magnetic resonance-guided focused ultrasound can effectively, noninvasively, and simultaneously deliver viral vectors targeting α-synuclein to multiple brain areas. Importantly, this approach may be useful to alter the progression of Lewy pathology along selected neuronal pathways, particularly as prodromal PD markers improve early diagnoses. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/diagnóstico por imagem , Regulação da Expressão Gênica/genética , Inativação Gênica/fisiologia , Imageamento por Ressonância Magnética/métodos , Ultrassonografia , alfa-Sinucleína/genética , Animais , Apoptose/genética , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Morte Celular/genética , Dependovirus/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sinaptofisina/metabolismo , Fatores de Tempo , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
5.
J Control Release ; 351: 667-680, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179767

RESUMO

Focused ultrasound combined with intravenously injected microbubbles (FUS) is known to non-invasively, locally, and transiently increase the permeability of the blood-brain barrier (BBB). A promising approach for non-invasive gene delivery to the brain is to administer recombinant adeno-associated viruses (AAVs) intravenously and allow them to cross the BBB at precise FUS-targeted brain regions. FUS-AAV delivery has been achieved in animal models; however, the key elements influencing, guiding, and monitoring the success of FUS-AAV delivery to the brain remain largely unknown. We systematically compared the ability of AAV1, AAV2, AAV5, AAV8, AAV9, and AAVrg to enter four specific brain regions and transduce two main cell types: neurons and astrocytes. Our results demonstrate that the AAV serotype, the extent of FUS-induced BBB permeability, and the intrinsic properties of the targeted brain tissue influence the observed biodistribution, diffusion and transduction of AAV to cells of the cerebrovasculature and brain parenchyma. Non-invasive contrast-enhanced MR imaging was found to predict the efficacy of FUS-AAV delivery. Notably, we also found that AAVs with high biodistribution to peripheral organs result in low gene delivery to the brain when combined with FUS. Gene delivery by AAV1, AAV2, AAV5, AAV8 and AAV9 was highly and selectively localized to FUS-targeted brain areas. To obtain non-invasive gene delivery to multiple brain regions with one area of FUS-BBB modulation, we combined a modified AAV2 vector harboring enhanced retrograde transport properties (AAVrg) with FUS-mediated brain delivery. This allowed for gene delivery from the FUS-targeted site to multiple connected brain regions. This study demonstrates that MR imaging can be used as a non-invasive indication of AAV delivery to the brain, and that the properties of AAV serotypes influence the efficacy of gene delivery to the brain with FUS. AAVs that have minimal peripheral biodistribution are ideal candidates for enhanced, and perhaps exclusive with future serotypes, delivery to the brain with FUS. The characterization of parameters influencing FUS-AAV delivery to the brain are critical to the design of safe and efficient gene therapies, from preclinical studies to future clinical applications.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Sorogrupo , Distribuição Tecidual , Dependovirus/genética , Encéfalo/diagnóstico por imagem , Barreira Hematoencefálica , Microbolhas
6.
Bio Protoc ; 11(12): e4056, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34262999

RESUMO

Basal forebrain cholinergic neurons (BFCNs) regulate circuit dynamics underlying cognitive processing, including attention, memory, and cognitive flexibility. In Alzheimer's disease and related neurodegenerative conditions, the degeneration of BFCNs has long been considered a key player in cognitive decline. The cholinergic system thus represents a key therapeutic target. A long-standing obstacle for the development of effective cholinergic-based therapies is not only the production of biologically active compounds but also a platform for safe and efficient drug delivery to the basal forebrain. The blood-brain barrier (BBB) presents a significant challenge for drug delivery to the brain, excluding approximately 98% of small-molecule biologics and nearly 100% of large-molecule therapeutic agents from entry into the brain parenchyma. Current modalities to achieve effective drug delivery to deep brain structures, such as the basal forebrain, are particularly limited. Direct intracranial injection via a needle or catheter carries risks associated with invasive neurosurgery. Intra-arterial injection of hyperosmotic solutions or therapeutics modified to penetrate the BBB using endogenous transport systems lack regional specificity, which may not always be desirable. Intranasal, intrathecal, and intraventricular administration have limited drug distribution beyond the brain surface. Here, we present a protocol for non-invasively, locally, and transiently increasing BBB permeability using MRI-guided focused ultrasound (MRIgFUS) in the murine basal forebrain for delivery of therapeutic agents targeting the cholinergic system. Ongoing work in preclinical models and clinical trials supports the safety and feasibility of MRIgFUS-mediated BBB modulation as a promising drug delivery modality for the treatment of debilitating neurological diseases.

7.
Brain Commun ; 3(4): fcab247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761222

RESUMO

The accumulation of aggregated alpha-synuclein (α-syn) in Parkinson's disease, dementia with Lewy bodies and multiple system atrophy is thought to involve a common prion-like mechanism, whereby misfolded α-syn provides a conformational template for further accumulation of pathological α-syn. We tested whether silencing α-syn gene expression could reduce native non-aggregated α-syn substrate and thereby disrupt the propagation of pathological α-syn initiated by seeding with synucleinopathy-affected mouse brain homogenates. Unilateral intracerebral injections of adeno-associated virus serotype-1 encoding microRNA targeting the α-syn gene reduced the extent and severity of both the α-syn pathology and motor deficits. Importantly, a moderate 50% reduction in α-syn was sufficient to prevent the spread of α-syn pathology to distal brain regions. Our study combines behavioural, immunohistochemical and biochemical data that strongly support α-syn knockdown gene therapy for synucleinopathies.

8.
Stem Cells Dev ; 29(22): 1429-1443, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32962528

RESUMO

Cell therapy offers significant promise for traumatic spinal cord injury (SCI), which despite many medical advances, has limited treatment strategies. Able to address the multifactorial and dynamic pathophysiology of SCI, cells present various advantages over standard pharmacological approaches. However, the use of live cells is also severely hampered by logistical and practical considerations. These include specialized equipment and expertise, standardization of cell stocks, sustained cell viability post-thawing, and cryopreservation-induced delayed-onset cell death. For this reason, we suggest a novel and clinically translatable alternative to live-cell systemic infusion, which retains the efficacy of the latter while overcoming many of its limitations. This strategy involves the administration of concentrated cell secretome and exploits the trophic mechanism by which stromal cells function. In this study, we compare the efficacy of intravenously delivered concentrated conditioned media (CM) from human umbilical cord matrix cells (HUCMCs), bone marrow mesenchymal stromal cells, as well as newborn and adult fibroblasts in a rat model of moderately severe cervical clip compression/contusion injury (C7--T1, 35 g). This is further paired with a thorough profile of the CM cytokines, chemokines, and angiogenic factors. The HUCMC-derived CM was most effective at limiting acute (48 h post-SCI) vascular pathology, specifically lesion volume, and functional vascularity. Principle component analysis (PCA), hierarchical clustering, and interaction analysis of proteins highly expressed in the HUCMC secretome suggest involvement of the MAPK/ERK, JAK/STAT, and immune cell migratory pathways. This "secretotherapeutic" strategy represents a novel and minimally invasive method to target multiple organ systems and several pathologies shortly after traumatic SCI.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Antígenos/metabolismo , Movimento Celular/efeitos dos fármacos , Análise por Conglomerados , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Infusões Intravenosas , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Análise de Componente Principal , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Traumatismos da Medula Espinal/patologia , Resultado do Tratamento , Cordão Umbilical/citologia
9.
Methods Mol Biol ; 1950: 177-197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783974

RESUMO

Recombinant adeno-associated viral (rAAV) vectors are a promising tool for therapeutic gene delivery to the brain. However, the delivery of rAAVs across the blood-brain barrier (BBB) and entry into the brain remains a major challenge for rAAV-based gene therapy. To circumvent this limitation, transcranial MRI-guided focused ultrasound (MRIgFUS) combined with intravenously injected microbubbles has been used to transiently and reversibly increase BBB permeability in targeted brain regions. Systemic administration of rAAVs at the time of sonication with focused ultrasound (FUS) facilitates the passage of rAAVs through the BBB and into the brain parenchyma. We and others have demonstrated that FUS-mediated rAAV delivery to the brain results in efficient transduction and transgene expression in vivo. Using this approach, the dose of intravenously injected rAAV variants that can cross the BBB can be reduced by 100 times, achieving significant transgene expression in the brain parenchyma with reduced peripheral transduction. Moreover, this strategy can be used to deliver rAAV variants that do not cross the BBB from the blood to selected brain regions. Here, we provide a detailed protocol for FUS-induced BBB permeability for targeted rAAV delivery to the brain of adult mice and rats.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Imageamento por Ressonância Magnética , Neuronavegação , Ultrassonografia , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos da radiação , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Neuronavegação/métodos , Permeabilidade/efeitos da radiação , Ratos , Transgenes , Ultrassonografia/métodos
10.
Stem Cells Transl Med ; 8(7): 639-649, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30912623

RESUMO

Localized vascular disruption after traumatic spinal cord injury (SCI) triggers a cascade of secondary events, including inflammation, gliosis, and scarring, that can further impact recovery. In addition to immunomodulatory and neurotrophic properties, mesenchymal stromal cells (MSCs) possess pericytic characteristics. These features make MSCs an ideal candidate for acute cell therapy targeting vascular disruption, which could reduce the severity of secondary injury, enhance tissue preservation and repair, and ultimately promote functional recovery. A moderately severe cervical clip compression/contusion injury was induced at C7-T1 in adult female rats, followed by an intravenous tail vein infusion 1 hour post-SCI of (a) term-birth human umbilical cord perivascular cells (HUCPVCs); (b) first-trimester human umbilical cord perivascular cells (FTM HUCPVCs); (c) adult bone marrow mesenchymal stem cells; or (d) vehicle control. Weekly behavioral testing was performed. Rats were sacrificed at 24 hours or 10 weeks post-SCI and immunohistochemistry and ultrasound imaging were performed. Both term and FTM HUCPVC-infused rats displayed improved (p < .05) grip strength compared with vehicle controls. However, only FTM HUCPVC-infusion led to significant weight gain. All cell infusion treatments resulted in reduced glial scarring (p < .05). Cell infusion also led to increased axonal, myelin, and vascular densities (p < .05). Although post-traumatic cavity volume was reduced with cell infusion, this did not reach significance. Taken together, we demonstrate selective long-term functional recovery alongside histological improvements with HUCPVC infusion in a clinically relevant model of cervical SCI. Our findings highlight the potential of these cells for acute therapeutic intervention after SCI.


Assuntos
Envelhecimento/metabolismo , Comportamento Animal , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Envelhecimento/patologia , Animais , Compostos de Benzilideno , Modelos Animais de Doenças , Feminino , Xenoenxertos , Infusões Intravenosas , Células-Tronco Mesenquimais/patologia , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
11.
Brain Plast ; 4(1): 17-52, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30564545

RESUMO

Physical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain. Increased physical activity (such as by the voluntary use of a running wheel or regular, timed sessions on a treadmill) also promotes proliferation, maturation and survival of cells in the dentate gyrus, contributing to the process of adult hippocampal neurogenesis. In this way, rodent studies have tremendous value as they demonstrate that an 'active lifestyle' has the capacity to ameliorate a number of age-related changes in the brain, including the decline in adult neurogenesis. Moreover, these studies have shown that greater physical activity may protect the brain health into advanced age through a number of complimentary mechanisms: in addition to upregulating factors in pro-survival neurotrophic pathways and enhancing synaptic plasticity, increased physical activity promotes brain health by supporting the cerebrovasculature, sustaining the integrity of the blood-brain barrier, increasing glymphatic clearance and proteolytic degradation of amyloid beta species, and regulating microglia activation. Collectively, preclinical studies demonstrate that exercise initiates diverse and powerful neuroprotective pathways that may converge to promote continued brain health into old age. This review will draw on both seminal and current literature that highlights mechanisms by which exercise supports the functioning of the brain, and aids in its protection.

13.
J Alzheimers Dis ; 53(1): 243-57, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27163797

RESUMO

Evidence suggests that physical exercise can serve as a preventive strategy against Alzheimer's disease (AD). In contrast, much less is known about the impact of exercise when it is introduced after cognitive deficits are established. Using the TgCRND8 mouse model of amyloidosis, we compared the effects of exercise as an intervention strategy aimed at altering disease progression. Voluntary running for 1 month or 2 months was introduced in 3-month-old TgCRND8 mice, which exhibit amyloid-beta (Aß) plaque pathology and cognitive deficits at this age. Specifically, we examined Aß plaque load, spatial memory, and neurogenesis in the dentate gyrus in the hippocampus. After 1 month of running, TgCRND8 mice spent more time in the novel arm of the Y-maze compared to the familiar arms, indicating improved memory. The levels of doublecortin (a marker of immature neurons) were increased in TgCRND8 mice running for 1 month, but with no significant difference in the number of new mature neurons or plaque burden. As the disease progressed, running prevented further deficits in the Y-maze performance and hippocampal neurogenesis and it reduced plaque load pathology in TgCRND8 mice running for 2 months, compared to non-running transgenics. Therefore, the impact of running on memory, neurogenesis, and amyloid pathology was of greater significance when sustained through later stages of the disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/reabilitação , Peptídeos beta-Amiloides/metabolismo , Condicionamento Físico Animal/fisiologia , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Bromodesoxiuridina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Comportamento Exploratório/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Memória Espacial/fisiologia , Fatores de Tempo
14.
Exp Neurol ; 248: 16-29, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707300

RESUMO

Noninvasive, targeted drug delivery to the brain can be achieved using transcranial focused ultrasound (FUS), which transiently increases the permeability of the blood-brain barrier (BBB) for localized delivery of therapeutics from the blood to the brain. Previously, we have demonstrated that FUS can deliver intravenously-administered antibodies to the brain of a mouse model of Alzheimer's disease (AD) and rapidly reduce plaques composed of amyloid-ß peptides (Aß). Here, we investigated two potential effects of transcranial FUS itself that could contribute to a reduction of plaque pathology, namely the delivery of endogenous antibodies to the brain and the activation of glial cells. We demonstrate that transcranial FUS application leads to a significant reduction in plaque burden four days after a single treatment in the TgCRND8 mouse model of AD and that endogenous antibodies are found bound to Aß plaques. Immunohistochemical and western blot analyses showed an increase in endogenous immunoglobulins within the FUS-targeted cortex. Subsequently, microglia and astrocytes in FUS-treated cortical regions show signs of activation through increases in protein expression and changes in glial size, without changes in glial cell numbers. Enhanced activation of glia correlated with increased internalization of Aß in microglia and astrocytes. Together these data demonstrate that FUS improved the bioavailability of endogenous antibodies and led to a temporal activation of glial cells, providing evidence towards antibody- and glia-dependent mechanisms of FUS-mediated plaque reduction.


Assuntos
Doença de Alzheimer/terapia , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Neuroglia/patologia , Placa Amiloide/patologia , Ultrassonografia/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Placa Amiloide/genética , Placa Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa