Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(29): 8809-8817, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39008523

RESUMO

In conventional electrochemiluminescence (ECL) systems, the presence of the competitive cathodic hydrogen evolution reaction (HER) in aqueous electrolytes is typically considered to be a side reaction, leading to a reduced ECL efficiency and stability due to H2 generation and aggregation at the electrode surface. However, the significant role of adsorbed hydrogen (H*) as a key intermediate, formed during the Volmer reaction in the HER process, has been largely overlooked. In this study, employing the luminol-H2O2 system as a model, we for the first time demonstrate a novel H*-mediated coreactant activation mechanism, which remarkably enhances the ECL intensity. H* facilitates cleavage of the O-O bond in H2O2, selectively generating highly reactive hydroxyl radicals for efficient ECL reactions. Experimental investigations and theoretical calculations demonstrate that this H*-mediated mechanism achieves superior coreactant activation compared to the conventional direct electron transfer pathway, which unveils a new pathway for coreactant activation in the ECL systems.

2.
J Am Chem Soc ; 146(17): 12197-12205, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629507

RESUMO

The development of potential-resolved electrochemiluminescence (ECL) systems with dual emitting signals holds great promise for accurate and reliable determination in complex samples. However, the practical application of such systems is hindered by the inevitable mutual interaction and mismatch between different luminophores or coreactants. In this work, for the first time, by precisely tuning the oxygen reduction performance of M-N-C single-atom catalysts (SACs), we present a dual potential-resolved luminol ECL system employing endogenous dissolved O2 as a coreactant. Using advanced in situ monitoring and theoretical calculations, we elucidate the intricate mechanism involving the selective and efficient activation of dissolved O2 through central metal species modulation. This modulation leads to the controlled generation of hydroxyl radical (·OH) and superoxide radical (O2·-), which subsequently trigger cathodic and anodic luminol ECL emission, respectively. The well-designed Cu-N-C SACs, with their moderate oxophilicity, enable the simultaneous generation of ·OH and O2·-, thereby facilitating dual potential-resolved ECL. As a proof of concept, we employed the principal component analysis statistical method to differentiate antibiotics based on the output of the dual-potential ECL signals. This work establishes a new avenue for constructing a potential-resolved ECL platform based on a single luminophore and coreactant through precise regulation of active intermediates.

3.
Anal Chem ; 96(12): 5022-5028, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470563

RESUMO

For conventional potential-resolved ratiometric electrochemiluminescence (ECL) systems, the introduction of multiplex coreactants is imperative. However, the undesirable interactions between different coreactants inevitably affect analytical accuracy and sensitivity. Herein, through the coordination of aggregation-induced emission ligands with gadolinium cations, the self-luminescent metal-organic framework (Gd-MOF) is prepared and serves as a novel coreactant-free anodic ECL emitter. By the intercalation of [Ru(bpy)2dppz]2+ with light switch effect into DNA duplex, one high-efficiency cathodic ECL probe is obtained using K2S2O8 as a coreactant. In the presence of acetamiprid, the strong affinity between the target and its aptamer induces the release of [Ru(bpy)2dppz]2+, resulting in a decreasing cathode signal and an increasing anode signal owing to the ECL resonance energy transfer from Gd-MOF to [Ru(bpy)2dppz]2+. In this way, an efficient dual-signal ECL aptasensor is constructed for the ratiometric analysis of acetamiprid, exhibiting a remarkably low detection limit of 0.033 pM. Strikingly, by using only one exogenous coreactant, the cross interference from multiple coreactants can be eliminated, thus improving the detection accuracy. The developed high-performance ECL sensing platform is successfully applied to monitor the residual level of acetamiprid in real samples, demonstrating its potential application in the field of food security.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Neonicotinoides , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Fotometria , Técnicas Eletroquímicas/métodos
4.
Anal Chem ; 96(5): 2100-2106, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38262931

RESUMO

Improving the sensitivity in electrochemiluminescence (ECL) detection systems necessitates the integration of robust ECL luminophores and efficient signal transduction. In this study, we report a novel ECL nanoprobe (Zr-MOF) that exhibits strong and stable emission by incorporating aggregation-induced emission ligands into Zr-based metal-organic frameworks (MOFs). Meanwhile, we designed a high-performance signal modulator through the implementation of a well-designed controlled release system with a self-on/off function. ZnS quantum dots (QDs) encapsulated within the cavities of aminated mesoporous silica nanoparticles (NH2-SiO2) serve as the ECL quenchers, while adenosine triphosphate (ATP) aptamers adsorbed on the surface of NH2-SiO2 through electrostatic interaction act as "gatekeepers." Based on the target-triggered ECL resonance energy transfer between Zr-MOF and ZnS QDs, we establish a coreactant-free ECL aptasensor for the sensitive detection of ATP, achieving an impressive low detection limit of 0.033 nM. This study not only demonstrates the successful combination of ECL with controlled release strategies but also opens new avenues for developing highly efficient MOFs-based ECL systems.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Dióxido de Silício , Trifosfato de Adenosina , Preparações de Ação Retardada , Medições Luminescentes , Técnicas Eletroquímicas
5.
Nano Lett ; 23(11): 5358-5366, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265420

RESUMO

Accelerating the migration of interfacial carriers in a heterojunction is of paramount importance for driving high-performance photoelectric responses. However, the inferior contact area and large resistance at the interface limit the eventual photoelectric performance. Herein, we fabricated an S-scheme heterojunction involving a 2D/2D dual-metalloporphyrin metal-organic framework with metal-center-regulated CuTCPP(Cu)/CuTCPP(Fe) through electrostatic self-assembly. The ultrathin nanosheet-like architectures reduce the carrier migration distance, while the similar porphyrin backbones promote reasonable interface matching through π-π conjugation, thereby inhibiting the recombination of photogenerated carriers. Furthermore, the metal-center-regulated S-scheme band alignments create a giant built-in electric field, which provides a huge driving force for efficient carrier separation and migration. Coupling with the biomimetic catalytic activity of CuTCPP(Fe), the resultant heterojunction was utilized to construct photoelectrochemical uric acid biosensors. This work provides a general strategy to enhance photoelectric responses by engineering the interfacial structure of heterojunctions.

6.
Anal Chem ; 95(28): 10762-10768, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421333

RESUMO

The tris(bipyridine)ruthenium(II) (Ru(bpy)32+)-tripropylamine anodic electrochemiluminescence (ECL) system has been widely applied in commercial bioanalysis. However, the presence of amine compounds in the biological environment results in unavoidable anodic interference signals, which hinder further extensive use of the system. In contrast, the cathodic Ru(bpy)32+ ECL system can overcome these limitations. The Ru(bpy)32+/peroxydisulfate (S2O82-, PDS) ECL system has been extensively employed due to its ability to produce a sulfate radical anion (SO4•-) with strong oxidation ability, which enhances the ECL signal. However, the symmetrical molecular structure of PDS makes it challenging to be activated and causes low luminescence efficiency. To address this issue, we propose an efficient Ru(bpy)32+-based ternary ECL system that uses the iron-nitrogen-carbon single-atom catalyst (Fe-N-C SAC) as an advanced accelerator. Fe-N-C SAC can efficiently activate PDS into reactive oxygen species at a lower voltage, which significantly boosts the cathodic ECL emission of Ru(bpy)32+. Benefiting from the outstanding catalytic activity of Fe-N-C SAC, we successfully established an ECL biosensor that detects alkaline phosphatase activity with high sensitivity, demonstrating the feasibility of practical application.

7.
Angew Chem Int Ed Engl ; 62(19): e202302166, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36883969

RESUMO

In conventional luminol electrochemiluminescence (ECL) systems, hydrogen peroxide and dissolved oxygen are employed as typical co-reactants to produce reactive oxygen species (ROS) for efficient ECL emission. However, the self-decomposition of hydrogen peroxide and limited solubility of oxygen in water inevitably restrict the detection accuracy and luminous efficiency of luminol ECL system. Inspired by ROS-mediated ECL mechanism, for the first time, we used cobalt-iron layered double hydroxide as co-reaction accelerator to efficiently activate water to generate ROS for enhancing luminol emission. Experimental investigations verify the formation of hydroxyl and superoxide radicals in the process of electrochemical water oxidation, which subsequently react with luminol anion radicals to trigger strong ECL signals. Finally, the detection of alkaline phosphatase has been successfully achieved with impressive sensitivity and reproducibility for practical sample analysis.

8.
Angew Chem Int Ed Engl ; 62(33): e202308257, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37365673

RESUMO

Robust electrochemiluminescence (ECL) of carbon nitride (CN) requires efficient electron-hole recombination and the suppression of electrode passivation. In this work, Au nanoparticles and single atoms (AuSA+NP ) loaded on CN serve as dual active sites that significantly accelerate charge transfer and activate peroxydisulfate. Meanwhile, the well-established Schottky junctions between Au NPs and CN act as electron sinks, effectively trapping over-injected electrons to prevent electrode passivation. As a result, the porous CN modified with AuSA+NP exhibits an enhanced and stable ECL emission, with a minimal relative standard deviation of 0.24 %. Furthermore, the designed ECL biosensor based on AuSA+NP -CN shows a remarkable performance in detecting organophosphorus pesticides. This innovative strategy has the potential to offer new insights into strong and stable ECL emission for practical applications.

9.
Anal Chem ; 94(26): 9459-9465, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35734950

RESUMO

The conventional cathodic electrochemiluminescence (ECL) always requires a more negative potential to trigger strong emission, which inevitably damages the bioactivity of targets and decreases the sensitivity and specificity. In this work, iron single-atom catalysts (Fe-N-C SACs) were employed as an efficient co-reaction accelerator for the first time to achieve the impressively cathodic emission of a luminol-H2O2 ECL system at an ultralow potential. Benefiting from the distinct electronic structure, Fe-N-C SACs exhibit remarkable properties for the activation of H2O2 to produce massive reactive oxygen species (ROS) under a negative scanning potential from 0 to -0.2 V. The ROS can oxidize the luminol anions into luminol anion radicals, avoiding the tedious electrochemical oxidation process of luminol. Then, the in situ-formed luminol anion radicals will directly react with ROS for the strong ECL emission. As a proof of concept, sensitive detection of the carcinoembryonic antigen was realized by glucose oxidase-mediated ECL immunoassay, shedding light on the superiority of SACs to construct efficient cathodic ECL systems with low triggering potential.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Ferro , Limite de Detecção , Medições Luminescentes , Luminol/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio
10.
Sci Bull (Beijing) ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38679503

RESUMO

The anodic oxygen evolution reaction is a well-acknowledged side reaction in traditional aqueous electrochemiluminescence (ECL) systems due to the generation and surface aggregation of oxygen at the electrode, which detrimentally impacts the stability and efficiency of ECL emission. However, the effect of reactive oxygen species generated during water oxidation on ECL luminophores has been largely overlooked. Taking the typical luminol emitter as an example, herein, we employed NiIr single-atom alloy aerogels possessing efficient water oxidation activity as a prototype co-reaction accelerator to elucidate the relationship between ECL behavior and water oxidation reaction kinetics for the first time. By regulating the concentration of hydroxide ions in the electrolyte, the electrochemical oxidation processes of both luminol and water are finely tuned. When the concentration of hydroxide ions in electrolyte is low, the kinetics of water oxidation is attenuated, which limits the generation of oxygen, effectively mitigates the influence of oxygen accumulation on the ECL strength, and offers a novel perspective for harnessing side reactions in ECL systems. Finally, a sensitive and stable sensor for antioxidant detection was constructed and applied to the practical sample detection.

11.
Mater Sci Eng C Mater Biol Appl ; 109: 110553, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228980

RESUMO

A green strategy by integrating surface-initiated metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) with mussel-inspired polydopamine (PDA) chemistry, was used to fabricate multi-walled carbon nanotubes (MWCNTs)/poly(4-vinylpyridine) (P4VP) nanocomposites. Self-healing nanocomposite hydrogels were facilely designed with these nanocomposites through dynamic supramolecular interactions. Using mussel-inspired PDA chemistry from MWCNTs, nanocomposites (MWCNTs@PDA-P4VP) were successfully prepared by metal-free PET-ATRP with MWCNTs@PDA-Br as an initiator, rhodamine B as photocatalyst, 4-vinylpyridine (4VP) as monomer, respectively. Importantly, the obtained nanocomposite hydrogels had high mechanical strength (2.9 MPa), prior fracture strain (633.8%) and excellent self-healing property (90.6%). These methodologies will provide opportunities for the design of eco-functional materials or flexible biosensors.


Assuntos
Materiais Biomiméticos/química , Hidrogéis/química , Nanocompostos/química , Nanotubos de Carbono/química , Polivinil/química , Animais , Bivalves
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa