Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Exp Cell Res ; 441(2): 114169, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39029574

RESUMO

Advanced hepatocellular carcinoma (HCC) patients have poor prognosis. As an endogenous antioxidant enzyme involved in a variety of bioprocesses, sulfiredoxin-1 (SRXN1) plays an irreplaceable role in promoting the development of tumors. However, the role and working mechanism of SRXN1 in HCC remain unclear. In this study, we confirmed that SRXN1 promoted the cell proliferation of HCC at genetic and pharmacological level, respectively. Transcriptome sequencing analysis revealed SRXN1 knockdown had a significant effect on the expression of lysosome biogenesis related genes. Further experiments validated that lysosome biogenesis and autophagic flux were enhanced after SRXN1 inhibition and reduced as SRXN1 overexpression. Mechanism study revealed that ROS accumulation induced TFEB nuclear translocation, followed by increased autophagy. Following this rationale, the combination of SRXN1 inhibitor and sorafenib demonstrated noticeable synergistic antitumor effect through the boost of ROS both in vivo and in vitro. Taken together, SRXN1 could be a potential therapeutic target for HCC therapy.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Lisossomos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Proliferação de Células/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Animais , Camundongos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Masculino , Sorafenibe/farmacologia
2.
BMC Cancer ; 24(1): 306, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448905

RESUMO

BACKGROUND: Patients with hepatocellular carcinoma (HCC) who undergo transarterial chemoembolization (TACE) may have varied outcomes based on their liver function and tumor burden diversity. This study aims to assess the prognostic significance of the tumor burden score (TBS) in these patients and develop a prognostic model for their overall survival. METHODS: The study involved a retrospective analysis of 644 newly diagnosed HCC patients undergoing TACE treatment. The individuals were assigned randomly to a training cohort (n = 452) and a validation cohort (n = 192). We utilized a multivariate Cox proportional risk model to identify independent preoperative predictive factors. We then evaluated model performance using the area under the curve (AUC), consistency index (c-index), calibration curve, and decision curve analysis (DCA) methods. RESULTS: The multivariate analysis revealed four prognostic factors associated with overall survival: Tumor Burden Score, Tumor Extent, Types of portal vein invasion (PVI), and Child-Pugh score. The total score was calculated based on these factors. The model demonstrated strong discriminative ability with high AUC values and c-index, providing high net clinical benefits for patients. Based on the model's scoring results, patients were categorized into high, medium, and low-risk groups. These results were validated in the validation cohort. CONCLUSIONS: The tumor burden score shows promise as a viable alternative prognostic indicator for assessing tumor burden in cases of HCC. The new prognostic model can place patients in one of three groups, which will estimate their individual outcomes. For high-risk patients, it is suggested to consider alternative treatment options or provide the best supportive care, as they may not benefit significantly from TACE treatment.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Prognóstico , Estudos Retrospectivos , Carga Tumoral
3.
J Phys Chem A ; 128(19): 3801-3811, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38709493

RESUMO

The 2-(2-aminophenyl)naphthalene molecule attracted much attention due to excited-state intramolecular proton transfer (ESIPT) from an amino NH2 group to a carbon atom of an adjacent aromatic ring. The ESIPT mechanisms of 2-(2-aminophenyl)naphthalene are still unclear. Herein, the decay pathways of this molecule in vacuum were investigated by combining static electronic structure calculations and nonadiabatic dynamics simulations. The calculations indicated the existence of two stable structures (S0-1 and S0-2) in the S0 and S1 states. For the S0-1 isomer, upon excitation to the Franck-Condon point, the system relaxed to the S1 minimum quickly, and then there exist four decay pathways (two ESIPT ones and two decay channels with C atom pyramidalization). In the ESIPT decay pathways, the system encounters the S1S0-PT-1 or S1S0-PT-2 conical intersection, which funnels the system rapidly to the S0 state. In the other two pathways, the system de-excited from the S1 to the S0 state via the S1S0-1 or S1S0-2 conical intersection. For the S0-2 structure, the decay pathways were similar to those of S0-1. The dynamics simulations showed that 75 and 69% of trajectories experienced the two ESIPT conical intersections for the S0-1 and S0-2 structures, respectively. Our simulations showed that the lifetime of the S1 state of S0-1 (S0-2) is estimated to be 358 (400) fs. Notably, we not only found the detailed reaction mechanism of the system but also found that the different ground-state configurations of this system have little effect on the reaction mechanism in vacuum.

4.
J Environ Manage ; 353: 120281, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38335597

RESUMO

Inclusive green growth (IGG) has been widely discussed for its emphasis on coordinating economic growth quality, social equity, as well as environmentally sustainable development. New infrastructure, representing network and information infrastructure construction, has emerged as a pivotal national strategy to stimulate socioeconomic progress, and its impact on the inclusive green growth deserves careful exploration. Employing the staggered difference-in-difference (staggered DID) approach, this study investigates the influence of new infrastructure on IGG based on Chinese prefecture-level city data from 2011 to 2019, taking advantage of the "Broadband China" strategy (BCS) as a quasi-natural experiment. The results indicate a significant enhancement in IGG due to new infrastructure construction, which remains tenable after rigorous robustness assessments. Further testing with the spatial Durbin DID method reveals that BCS has a significant positive spillover impact on IGG in neighboring areas. For its underlying mechanisms, new infrastructure construction enhances IGG mainly by reinforcing industrial structure supererogation, improving the urban innovation level, and developing digital inclusive finance. There is also evidence that heterogeneity highlights the advancing effects of IGG in the central region, non-aging industrial base cities and non-resource-based cities. This research sheds new light on the understanding of the effect of new infrastructure on promoting IGG through both conceptual and empirical aspects and is conducive to future policymaking for developing countries.


Assuntos
Desenvolvimento Econômico , Indústrias , China , Cidades , Imunoglobulina G
5.
PLoS One ; 19(1): e0294662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236829

RESUMO

This paper investigates the complex causal relationships between various types of environmental regulatory instruments (ERI) and agri-firms' technological innovation employing fuzzy set qualitative comparative analysis (fsQCA). The study finds a well-designed set of ERI can promote technological innovation in agribusiness; control-command ERI cannot promote technological innovation in agribusiness solely, market-incentivized ERI is indispensable in promoting firms' innovation performance, implicit ERI plays an important role in promoting firms' innovation and voluntary ERI does not play a significant role in promoting firms' technological innovation. The government should coordinate among various types of ERI and improve the design of ERI to achieve a win-win situation for both economic and environmental performance in the agriculture sector.


Assuntos
Governo , Invenções , Agricultura , China
7.
Cell Death Dis ; 15(6): 421, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886351

RESUMO

Targeted and immunotherapy combined with interventional therapy can improve the prognosis of advanced cancer patients, and it has become a hot spot to find the new therapeutic schemes, but most of which are not satisfactory. Single-cell RNA sequencing was performed in PDX mouse models with or without TCC therapy. 2-'O-Methylation modification and multiplex immunofluorescence staining were used to explore the function and mechanism of SAMD4B in the immune context of HCC. Here, we propose for the first time a synergistic immunochemotherapy that exerts a potent antitumour effect for patients with advanced hepatocellular carcinoma (HCC) in clinical practice based on three common antitumour drugs and found that HCC patients with new synergistic immunochemotherapy had better three-year overall survival (p = 0.004) and significantly higher survival ratio (increased by 2.3 times) than the control group. We further reveal the immunoregulatory mechanism of synergistic immunochemotherapy through 2'-O-Methylation modification mediated by SAMD4B, a tumour suppressor gene. Mechanistically, SAMD4B, increased by the reduced mutations of upstream genes NOTCH1 and NOTCH2, affected the instability of APOA2 mRNA by 2-'O-Methylation modification of the C-terminus. The decreased APOA2 further attenuated programmed death ligand 1 (PD-L1) level with a direct interaction pattern. The high-SAMD4B tumour tissues contained fewer native CD29+CD8+ T cells, which improved immune microenvironment to achieve the effect of antitumour effect. Overall, we developed a potent synergistic immunochemotherapy strategy that exerts an efficient anti-HCC effect inducing SAMD4B-APOA2-PD-L1 axis to inhibit tumour immune evasion.


Assuntos
Antígeno B7-H1 , Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Animais , Humanos , Camundongos , Imunoterapia/métodos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Masculino , Microambiente Tumoral , Feminino
8.
Mater Today Bio ; 25: 100958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327975

RESUMO

Cirrhosis is an aggressive disease, and over 80 % of liver cancer patients are complicated by cirrhosis, which lacks effective therapies. Transplantation of mesenchymal stem cells (MSCs) is a promising option for treating liver cirrhosis. However, this therapeutic approach is often challenged by the low homing ability and short survival time of transplanted MSCs in vivo. Therefore, a novel and efficient cell delivery system for MSCs is urgently required. This new system can effectively extend the persistence and duration of MSCs in vivo. In this study, we present novel porous microspheres with microfluidic electrospray technology for the encapsulation of bone marrow-derived MSCs (BMSCs) in the treatment of liver cirrhosis. Porous microspheres loaded with BMSCs (Mi-BMSCs) exhibit good biocompatibility and demonstrate better anti-inflammatory properties than BMSCs alone. Mi-BMSCs significantly increase the duration of BMSCs and exert potent anti-inflammatory and anti-fibrosis effects against CCl4 and TAA-induced liver cirrhosis by targeting the TGF-ß/Smad signaling pathway to ameliorate cirrhosis, which highlight the potential of Mi-BMSCs as a promising therapeutic approach for early liver cirrhosis.

9.
Oncogene ; 43(13): 944-961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351345

RESUMO

Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration. POSTN also mediated the crosstalk between HCC and EPCs, which promoted metastasis ability and upregulated CD36 expression in HCC through indirect crosstalk. Chemokine arrays further revealed that hepatic-derived POSTN induced elevated CCL2 expression and secretion in EPCs, and CCL2 promoted prometastatic traits in HCC. Mechanistic studies showed that POSTN upregulated CCL2 expression in EPCs via the αvß3/ILK/NF-κB pathway. CCL2 further induced CD36 expression via the CCR2/STAT3 pathway by directly binding to the promoter region of CD36. Finally, CD36 was verified to have a prometastatic role in vitro and to be correlated with POSTN expression, metastasis and recurrence in HCC in clinical samples. Our findings revealed that crosstalk between HCC and EPCs is mediated by periostin/CCL2/CD36 signalling which promotes HCC metastasis and emphasizes a potential therapeutic strategy for preventing HCC metastasis.


Assuntos
Antígenos CD36 , Carcinoma Hepatocelular , Quimiocina CCL2 , Células Progenitoras Endoteliais , Neoplasias Hepáticas , Periostina , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Neoplasias Hepáticas/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética , Quimiocina CCL2/metabolismo , Antígenos CD36/metabolismo
10.
J Ginseng Res ; 47(6): 773-783, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38107400

RESUMO

Background: Gray mold, caused by Botrytis cinerea, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to B. cinerea could be induced by fungal hypovirulent strain △BcSpd1. BcSpd1 encodes Zn(II)2Cys6 transcription factor which regulates fungal pathogenicity and we recently reported △BcSpd1 mutants reduced fungal virulence. Methods: We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by B. cinerea △BcSpd1. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed. Results: We found that △BcSpd1 enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △BcSpd1 on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth. Conclusion: B. cinerea △BcSpd1 could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.

11.
Mater Today Bio ; 23: 100873, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149018

RESUMO

Lipiodol-based transcatheter arterial chemoembolization (TACE) is currently the predominant and first-line treatment option recommended by the global standard for unresectable hepatocellular carcinoma (HCC). However, the unstable emulsion of Lipiodol causes a substantial proportion of chemotherapy drugs to enter the circulation system, leading to poor accumulation in cancer tissues and unexpected side effects of chemotherapy drugs. Herein, we emulsified Lipiodol with a pH-sensitive drug delivery system assembled from hexahistidine and zinc ions (HmA) with a super-high loading capacity of doxorubicin (DOX) and a promising ability to penetrate bio-barriers for the effective treatment of HCC by TACE. In vitro tests showed that DOX@HmA was comparable to free DOX in killing HCC cells. Impressively, during the in vivo TACE treatment, the anti-tumor efficacy of DOX@HmA was significantly greater than that of free DOX, indicating that DOX@HmA increased the accumulation of DOX in tumor. Emulsifying Lipiodol with pH-sensitive DOX@HmA significantly inhibited cell regeneration and tumor angiogenesis and decreased the systemic side effects of chemotherapy, especially by suppressing pulmonary metastasis in liver VX2 tumors in rabbits by inhibiting epithelial-mesenchymal transition (EMT). Emulsifying tumor microenvironment-responsive drug delivery systems (DDSs) with Lipiodol could be a new strategy for clinical TACE chemotherapy with potentially enhanced HCC treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa