Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 820, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217307

RESUMO

BACKGROUND: Nuclear factor Y (NF-Y) plays a vital role in numerous biological processes as well as responses to biotic and abiotic stresses. However, its function in ginger (Zingiber officinale Roscoe), a significant medicinal and dietary vegetable, remains largely unexplored. Although the NF-Y family has been thoroughly identified in many plant species, and the function of individual NF-Y TFs has been characterized, there is a paucity of knowledge concerning this family in ginger. METHODS: We identified the largest number of NF-Y genes in the ginger genome using two BLASTP methods as part of our ginger genome research project. The conserved motifs of NF-Y proteins were analyzed through this process. To examine gene duplication events, we employed the Multiple Collinearity Scan toolkit (MCScanX). Syntenic relationships of NF-Y genes were mapped using the Dual Synteny Plotter software. Multiple sequence alignments were performed with MUSCLE under default parameters, and the resulting alignments were used to generate a maximum likelihood (ML) phylogenetic tree with the MEGA X program. RNA-seq analysis was conducted on collected samples, and statistical analyses were performed using Sigma Plot v14.0 (SYSTAT Software, USA). RESULTS: In this study, the ginger genome was utilized to identify 36 NF-Y genes (10 ZoNF-YAs, 16 ZoNF-YBs, and 10 ZoNF-YCs), which were renamed based on their chromosomal distribution. Ten distinct motifs were identified within the ZoNF-Y genes, with certain unique motifs being vital for gene function. By analyzing their chromosomal location, gene structure, conserved protein motifs, and gene duplication events, we gained a deeper understanding of the evolutionary characteristics of these ZoNF-Y genes. Detailed analysis of ZoNF-Y gene expression patterns across various tissues, performed through RNA-seq and qRT-PCR, revealed their significant role in regulating ginger rhizome and flower growth and development. Additionally, we identified the ZoNF-Y family genes that responded to abiotic stresses. CONCLUSION: This study represents the first identification of the ZoNF-Y family in ginger. Our findings contribute to research on evolutionary characteristics and provide a better understanding of the molecular basis for development and abiotic stress response. Furthermore, it lays the foundation for further functional characterization of ZoNF-Y genes with an aim of ginger crop improvement.


Assuntos
Evolução Molecular , Família Multigênica , Filogenia , Estresse Fisiológico , Zingiber officinale , Zingiber officinale/genética , Estresse Fisiológico/genética , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Duplicação Gênica , Sintenia
2.
BMC Genomics ; 24(1): 30, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653780

RESUMO

BACKGROUND: The genus Zingiber of the Zingiberaceae is distributed in tropical, subtropical, and in Far East Asia. This genus contains about 100-150 species, with many species valued as important agricultural, medicinal and horticultural resources. However, genomic resources and suitable molecular markers for species identification are currently sparse. RESULTS: We conducted comparative genomics and phylogenetic analyses on Zingiber species. The Zingiber chloroplast genome (size range 162,507-163,711 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 86,986-88,200 bp), a small single copy (SSC, 15,498-15,891 bp) and a pair of inverted repeats (IRs, 29,765-29,934 bp). The genomes contain 113 unique genes, including 79 protein coding genes, 30 tRNA and 4 rRNA genes. The genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats are conservative in the genomes of Zingiber. The analysis of sequence divergence indicates that the following genes undergo positive selection (ccsA, ndhA, ndhB, petD, psbA, psbB, psbC, rbcL, rpl12, rpl20, rpl23, rpl33, rpoC2, rps7, rps12 and ycf3). Eight highly variable regions are identified including seven intergenic regions (petA-pabJ, rbcL-accD, rpl32-trnL-UAG, rps16-trnQ-UUG, trnC-GCA-psbM, psbC-trnS-UGA and ndhF-rpl32) and one genic regions (ycf1). The phylogenetic analysis revealed that the sect. Zingiber was sister to sect. Cryptanthium rather than sect. Pleuranthesis. CONCLUSIONS: This study reports 14 complete chloroplast genomes of Zingiber species. Overall, this study provided a solid backbone phylogeny of Zingiber. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for Zingiber) of the generation of DNA markers. These results provide a foundation for future studies that seek to understand the molecular evolutionary dynamics or individual population variation in the genus Zingiber.


Assuntos
Genoma de Cloroplastos , Zingiberaceae , Filogenia , Zingiberaceae/genética , Genômica/métodos , Polimorfismo Genético , Evolução Molecular
3.
Mol Phylogenet Evol ; 169: 107431, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131418

RESUMO

Clarifying the process of formation of diversity hotspots and the biogeographic connection between regions is critical in understanding the impact of environmental changes on organismal evolution. Polygonatum (Asparagaceae) is distributed across the Northern Hemisphere. It displays an uneven distribution, with more than 50% of its species occurring in the Himalaya-Hengduan Mountains (HHM). Here, we generated a time-calibrated phylogeny of Polygonatum, based on whole-plastome data, to reconstruct the genus' biogeographical history and morphological/chromosomal evolution. Our phylogenetic analyses strongly support the monophyly of Polygonatum and its division into three sections (i.e., Verticillata, Sibirica, and Polygonatum). Polygonatum originated from the HHM region during the early-Miocene (c. 20.10 Ma), and began to radiate since the mid-Miocene, driven by the uplift of the Qinghai-Tibet Plateau (QTP), increasingly colder/arid climates following the mid-Miocene Climatic Optimum (MMCO), and intensification of the East Asian winter monsoon. Dispersal from the HHM region to other regions was facilitated by the intensification of East Asian summer monsoon in response to global climatic warming during the MMCO. Decreasing dysploidy accompanied by karyotype change and polyploidization in Polygonatum appears to be associated with its diversification and colonization of new ecological niches. Our results highlight the importance of regional tectonic activities and past climatic changes from the Neogene onwards to the spatial-temporal diversification and distribution patterns of plant lineages with a wide distribution in the Northern Hemisphere. They also contribute to the knowledge of the uneven species richness between East Asia and other regions.


Assuntos
Asparagaceae , Polygonatum , Ecossistema , Filogenia , Filogeografia , Plantas
4.
Ann Bot ; 130(1): 53-64, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35533344

RESUMO

BACKGROUND AND AIMS: The East Asian-Tethyan disjunction pattern and its mechanisms of formation have long been of interest to researchers. Here, we studied the biogeographical history of Asteraceae tribe Cardueae, with a particular focus on the temperate East Asian genus Atractylodes DC., to understand the role of tectonic and climatic events in driving the diversification and disjunctions of the genus. METHODS: A total of 76 samples of Atractylodes from 36 locations were collected for RAD-sequencing. Three single nucleotide polymorphism (SNP) datasets based on different filtering strategies were used for phylogenetic analyses. Molecular dating and ancestral distribution reconstruction were performed using both chloroplast DNA sequences (127 Cardueae samples) and SNP (36 Atractylodes samples) datasets. KEY RESULTS: Six species of Atractylodes were well resolved as individually monophyletic, although some introgression was identified among accessions of A. chinensis, A. lancea and A. koreana. Dispersal of the subtribe Carlininae from the Mediterranean to East Asia occurred after divergence between Atractylodes and Carlina L. + Atractylis L. + Thevenotia DC. at ~31.57 Ma, resulting in an East Asian-Tethyan disjunction. Diversification of Atractylodes in East Asia mainly occurred from the Late Miocene to the Early Pleistocene. CONCLUSIONS: Aridification of Asia and the closure of the Turgai Strait in the Late Oligocene promoted the dispersal of Cardueae from the Mediterranean to East China. Subsequent uplift of the Qinghai-Tibet Plateau as well as changes in Asian monsoon systems resulted in an East Asian-Tethyan disjunction between Atractylodes and Carlina + Atractylis + Thevenotia. In addition, Late Miocene to Quaternary climates and sea level fluctuations played major roles in the diversification of Atractylodes. Through this study of different taxonomic levels using genomic data, we have revealed an overlooked dispersal route between the Mediterranean and far East Asia (Japan/Korea) via Central Asia and East China.


Assuntos
Atractylodes , Filogenia , Dispersão Vegetal , Atractylodes/classificação , Atractylodes/genética , Ásia Oriental , Filogeografia
6.
Plants (Basel) ; 12(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37631210

RESUMO

Ginger is a valuable crop known for its nutritional, seasoning, and health benefits. However, abiotic stresses, such as high temperature and drought, can adversely affect its growth and development. Heat shock transcription factors (HSFs) have been recognized as crucial elements for enhancing heat and drought resistance in plants. Nevertheless, no previous study has investigated the HSF gene family in ginger. In this research, a total of 25 ZoHSF members were identified in the ginger genome, which were unevenly distributed across ten chromosomes. The ZoHSF members were divided into three groups (HSFA, HSFB, and HSFC) based on their gene structure, protein motifs, and phylogenetic relationships with Arabidopsis. Interestingly, we found more collinear gene pairs between ZoHSF and HSF genes from monocots, such as rice, wheat, and banana, than dicots like Arabidopsis thaliana. Additionally, we identified 12 ZoHSF genes that likely arose from duplication events. Promoter analysis revealed that the hormone response elements (MEJA-responsiveness and abscisic acid responsiveness) were dominant among the various cis-elements related to the abiotic stress response in ZoHSF promoters. Expression pattern analysis confirmed differential expression of ZoHSF members across different tissues, with most showing responsiveness to heat and drought stress. This study lays the foundation for further investigations into the functional role of ZoHSFs in regulating abiotic stress responses in ginger.

7.
Plants (Basel) ; 12(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836129

RESUMO

Ginger (Zingiber officinale Roscoe), a widely consumed edible and medicinal plant, possesses significant nutritional and economic value. Abiotic stresses such as drought and low temperatures can impact the growth and development of ginger. The plant-specific transcription factor Teosinte branched1/cycloidea/proliferating cell factor (TCP) has progressively been identified in various plants for its role in regulating plant growth and development as well as conferring resistance to abiotic stresses. However, limited information on the TCP family is available in ginger. In this study, we identified 20 TCP members in the ginger genome, which were randomly distributed across 9 chromosomes. Based on phylogenetic analysis, these ginger TCP were classified into two subfamilies: Class I (PCF) and Class II (CIN, CYC/TB). The classification of the identified ginger TCPs was supported by a multi-species phylogenetic tree and motif structure analysis, suggesting that the amplification of the ginger TCP gene family occurred prior to the differentiation of angiosperms. The promoter region of ginger TCP genes was found to contain numerous cis-acting elements associated with plant growth, development, and abiotic stress response. Among these elements, the stress response element, anaerobic induction, and MYB binding site play a dominant role in drought responsiveness. Additionally, expression pattern analysis revealed variations in the expression of ginger TCP gene among different tissues and in response to diverse abiotic stresses (drought, low temperature, heat, and salt). Our research offers a thorough examination of TCP members within the ginger plant. This analysis greatly contributes to the understanding of how TCP genes regulate tissue development and response to stress, opening up new avenues for further exploration in this field.

8.
Mitochondrial DNA B Resour ; 7(6): 1137-1139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756451

RESUMO

The inverted repeat-lacking clade (IRLC) species are characterized by the loss of an IR region in their plastomes, which has long been of great interest. Wisteriopsis reticulata is one of the members of the tribe Wisterieae, which belongs to Fabaceae and is well-known as IRLC. Here, we reported and characterized the complete chloroplast genome of W. reticulata using the genome skimming approach. The chloroplast genome is 132,477 bp in length and lacks one copy of IR region. The genome encoded 112 unique genes including 89 protein-coding genes, 29 transfer RNA genes and four ribosomal RNA genes. Phylogenetic results supported the monophyly of the tribe Wisterieae (IRLC) and confirmed that W. reticulata belongs to the genus Wisteriopsis.

9.
Genes (Basel) ; 14(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36672837

RESUMO

GRAS family proteins are one of the most abundant transcription factors in plants; they play crucial roles in plant development, metabolism, and biotic- and abiotic-stress responses. The GRAS family has been identified and functionally characterized in some plant species. However, this family in ginger (Zingiber officinale Roscoe), a medicinal crop and non-prescription drug, remains unknown to date. In the present study, 66 GRAS genes were identified by searching the complete genome sequence of ginger. The GRAS family is divided into nine subfamilies based on the phylogenetic analyses. The GRAS genes are distributed unevenly across 11 chromosomes. By analyzing the gene structure and motif distribution of GRAS members in ginger, we found that the GRAS genes have more than one cis-acting element. Chromosomal location and duplication analysis indicated that whole-genome duplication, tandem duplication, and segmental duplication may be responsible for the expansion of the GRAS family in ginger. The expression levels of GRAS family genes are different in ginger roots and stems, indicating that these genes may have an impact on ginger development. In addition, the GRAS genes in ginger showed extensive expression patterns under different abiotic stresses, suggesting that they may play important roles in the stress response. Our study provides a comprehensive analysis of GRAS members in ginger for the first time, which will help to better explore the function of GRAS genes in the regulation of tissue development and response to stress in ginger.


Assuntos
Zingiber officinale , Zingiber officinale/genética , Filogenia , Perfilação da Expressão Gênica , Genoma de Planta , Desenvolvimento Vegetal
10.
Front Plant Sci ; 13: 915526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845630

RESUMO

Climactic oscillations during the Quaternary played a significant role in the formation of genetic diversity and historical demography of numerous plant species in northwestern China. In this study, we used 11 simple sequence repeats derived from expressed sequence tag (EST-SSR), two chloroplast DNA (cpDNA) fragments, and ecological niche modeling (ENM) to investigate the population structure and the phylogeographic history of Lycium ruthenicum, a plant species adapted to the climate in northwestern China. We identified 20 chloroplast haplotypes of which two were dominant and widely distributed in almost all populations. The species has high haplotype diversity and low nucleotide diversity based on the cpDNA data. The EST-SSR results showed a high percentage of total genetic variation within populations. Both the cpDNA and EST-SSR results indicated no significant differentiation among populations. By combining the evidence from ENM and demographic analysis, we confirmed that both the last interglacial (LIG) and late-glacial maximum (LGM) climatic fluctuations, aridification might have substantially narrowed the distribution range of this desert species, the southern parts of the Junggar Basin, the Tarim Basin, and the eastern Pamir Plateau were the potential glacial refugia for L. ruthenicum during the late middle Pleistocene to late Pleistocene Period. During the early Holocene, the warm, and humid climate promoted its demographic expansion in northwestern China. This work may provide new insights into the mechanism of formation of plant diversity in this arid region.

11.
PhytoKeys ; 175: 137-149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475796

RESUMO

PolygonatumkingianumCollett et Hemsl.var.grandifolium D.M. Liu & W.Z. Zeng (1981), which sprouts twice a year, once in spring and once in autumn, differs from Polygonatumkingianum in leaves, bracts, perianth and filaments. Morphological comparison and molecular phylogeny indicate that it is identical to the newly-published Polygonatumhunanense H.H. Liu & B.Z. Wang (2021). Hence, we propose that P.kingianumvar.grandifolium should be recognised as a new synonym of P.hunanense. In addition, phylogenetic analyses confirmed that P.hunanense is sister to Polygonatumsect.Polygonatum, rather than P.kingianum of Polygonatumsect.Verticillata.

12.
Mitochondrial DNA B Resour ; 5(3): 2640-2641, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-33457890

RESUMO

Barnardia japonica is a perennial herb in Asparagaceae, which has important ornamental and medicinal value. Here, we sequenced and characterized the plastome of B. japonica from Sichuan, China. The plastome length of B. japonica was 156,111 bp, including an 84,333 bp LSC, a 18,272 bp SSC and two 26,753 bp IRs. A total of 132 genes were detected, including 20 duplicated genes and 112 unique genes. Phylogenetic analysis based on 32 taxa revealed the monophyly of B. japonica and its sister relationship to Albuca kirkii. In addition, our results will provide valuable information for the phylogeny of Asparagaceae.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa