RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl. (DNL) is a well-known traditional Chinese medicine that has been recorded in the Chinese Pharmacopoeia (2020 edition). The previous data showed that Dendrobium nobile Lindl. alkaloids (DNLA) protect against CCl4-induced liver damage via oxidative stress reduction and mitochondrial function improvement, yet the exact regulatory signaling pathways remain undefined. AIM OF THE STUDY: The aim of the present study was to investigate the role of necroptosis in the mode of CCl4-induced liver injury and determine whether DNLA protects against CCl4-induced acute liver injury (ALI) by inhibiting mitochondrial ROS (mtROS)-mediated necroptosis. MATERIALS AND METHODS: DNLA was extracted from DNL, and the content was determined using liquid chromatograph mass spectrometer (LC-MS). In vivo experiments were conducted in C57BL/6J mice. Animals were administrated with DNLA (20 mg/kg/day, ig) for 7 days, and then challenged with CCl4 (20 µL/kg, ip). CCl4-induced liver injury in mice was evaluated through the assessment of biochemical indicators in mouse serum and histopathological examination of hepatic tissue using hematoxylin and eosin (H&E) staining. The protein and gene expressions were determined with western blotting and quantitative real-time PCR (RT-qPCR). Reactive oxygen species (ROS) production was detected using the fluorescent probe DCFH-DA, and mitochondrial membrane potential was evaluated using a fluorescent probe JC-1. The mtROS level was assessed using a fluorescence probe MitoSOX. RESULTS: DNLA lessened CCl4-induced liver injury, evident by reduced AST and ALT levels and improved liver pathology. DNLA suppressed necroptosis by decreasing RIPK1, RIPK3, and MLKL phosphorylation, concurrently enhancing mitochondrial function. It also broke the positive feedback loop between mtROS and RIPK1/RIPK3/MLKL activation. Similar findings were observed with resveratrol and mitochondrial SOD2 overexpression, both mitigating mtROS and necroptosis. Further mechanistic studies found that DNLA inhibited the oxidation of RIPK1 and reduced its phosphorylation level, whereby lowering the phosphorylation of RIPK3 and MLKL, blocking necroptosis, and alleviating liver injury. CONCLUSIONS: This study demonstrates that DNLA inhibits the necroptosis signaling pathway by reducing mtROS mediated oxidation of RIPK1, thereby reducing the phosphorylation of RIPK1, RIPK3, and MLKL, and protecting against liver injury.
Assuntos
Alcaloides , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Dendrobium , Camundongos Endogâmicos C57BL , Necroptose , Espécies Reativas de Oxigênio , Animais , Dendrobium/química , Espécies Reativas de Oxigênio/metabolismo , Necroptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Masculino , Camundongos , Tetracloreto de Carbono/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismoRESUMO
Nuclear factor erythroid 2-related factor-2 (Nrf2) antioxidant signaling is involved in liver protection, but this generalization overlooks conflicting studies indicating that Nrf2 effects are not necessarily hepatoprotective. The role of Nrf2/heme oxygenase-1 (HO-1) in cholestatic liver injury (CLI) remains poorly defined. Here, we report that Nrf2/HO-1 activation exacerbates liver injury rather than exerting a protective effect in CLI. Inhibiting HO-1 or ameliorating bilirubin transport alleviates liver injury in CLI models. Nrf2 knockout confers hepatoprotection in CLI mice, whereas in non-CLI mice, Nrf2 knockout aggravates liver damage. In the CLI setting, oxidative stress activates Nrf2/HO-1, leads to bilirubin accumulation, and impairs mitochondrial function. High levels of bilirubin reciprocally upregulate the activation of Nrf2 and HO-1, while antioxidant and mitochondrial-targeted SOD2 overexpression attenuate bilirubin toxicity. The expression of Nrf2 and HO-1 is elevated in serum of patients with CLI. These results reveal an unrecognized function of Nrf2 signaling in exacerbating liver injury in cholestatic disease.
Assuntos
Bilirrubina , Colestase , Heme Oxigenase-1 , Camundongos Knockout , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Camundongos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Colestase/metabolismo , Colestase/patologia , Colestase/genética , Humanos , Masculino , Bilirrubina/metabolismo , Bilirrubina/sangue , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/lesões , Fígado/patologia , Modelos Animais de Doenças , Proteínas de MembranaRESUMO
Dendrobium is a traditional medicinal plant, which has a variety of clinical applications in China. It has been reported that Dendrobium contains various bioactive components, mainly including polysaccharides and alkaloids. Previous studies have shown that Dendrobium has pharmacological activities including antiviral, anti-inflammatory, and antioxidant effects, as well as immune regulation. Particularly, the anti-aging functions and neuroprotective effects of Dendrobium have been well characterized in a wide array of cell and animal models. In recent years, the effect of Dendrobium on the liver has emerged as a new direction to explore its therapeutic benefits and has received more and more attention. This review is focused on the beneficial effects of Dendrobium on liver toxicity and various liver disorders, which presumably are attributed to a consequence of an array of modes of action due to its multiple bioactive components, and largely lack mechanistic and pharmacokinetic characterization. A particular emphasis is placed on the potential action mechanisms related to Dendrobium's liver protection. Research perspectives in regard to the potential therapeutic application for Dendrobium are also discussed in this review.
Assuntos
Alcaloides , Dendrobium , Plantas Medicinais , Animais , Polissacarídeos/farmacologia , FígadoRESUMO
Mitochondrial dysfunction is critically involved in the degeneration of dopamine (DA) neurons in the substantia nigra, a common pathological feature of Parkinson's disease (PD). Previous studies have demonstrated that the NAD+-dependent acetylase Sirtuin 3 (SIRT3) participates in maintaining mitochondrial function and is downregulated in aging-related neurodegenerative disorders. The exact mechanism of action of SIRT3 on mitochondrial bioenergetics in PD pathogenesis, however, has not been fully described. In this study, we investigated the regulatory role of SIRT3-mediated deacetylation of mitochondrial complex II (succinate dehydrogenase) subunit A (SDHA) and its effect on neuronal cell survival in rotenone (ROT)-induced rat and differentiated MN9D cell models. The results revealed that SIRT3 activity was suppressed in both in vivo and in vitro PD models. Accompanying this downregulation of SIRT3 was the hyperacetylation of SDHA, impaired activity of mitochondrial complex II, and decreased ATP production. It was found that the inhibition of SIRT3 activity was attributed to a reduction in the NAD+/NADH ratio caused by ROT-induced inhibition of mitochondrial complex I. Activation of SIRT3 by icariin and honokiol inhibited SDHA hyperacetylation and increased complex II activity, leading to increased ATP production and protection against ROT-induced neuronal damage. Furthermore, overexpression of SDHA also exerted potent protective benefits in cells treated with ROT. In addition, treatment of MN9D cells with the NAD+ precursor nicotinamide mononucleotide increased SIRT3 activity and complex II activity and promoted the survival of cells exposed to ROT. These findings unravel a regulatory SIRT3-SDHA axis, which may be closely related to PD pathology. Bioenergetic rescue through SIRT3 activation-dependent improvement of mitochondrial complex II activity may provide an effective strategy for protection from neurodegeneration.