Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 202, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509479

RESUMO

BACKGROUND: Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. RESULTS: Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. CONCLUSIONS: The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.


Assuntos
Genomas de Plastídeos , Ranunculaceae , Evolução Molecular , Sequência de Bases , Ranunculaceae/genética , Filogenia , Genomas de Plastídeos/genética
2.
Nature ; 554(7691): 234-238, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420476

RESUMO

High species diversity may result from recent rapid speciation in a 'cradle' and/or the gradual accumulation and preservation of species over time in a 'museum'. China harbours nearly 10% of angiosperm species worldwide and has long been considered as both a museum, owing to the presence of many species with hypothesized ancient origins, and a cradle, as many lineages have originated as recent topographic changes and climatic shifts-such as the formation of the Qinghai-Tibetan Plateau and the development of the monsoon-provided new habitats that promoted remarkable radiation. However, no detailed phylogenetic study has addressed when and how the major components of the Chinese angiosperm flora assembled to form the present-day vegetation. Here we investigate the spatio-temporal divergence patterns of the Chinese flora using a dated phylogeny of 92% of the angiosperm genera for the region, a nearly complete species-level tree comprising 26,978 species and detailed spatial distribution data. We found that 66% of the angiosperm genera in China did not originate until early in the Miocene epoch (23 million years ago (Mya)). The flora of eastern China bears a signature of older divergence (mean divergence times of 22.04-25.39 Mya), phylogenetic overdispersion (spatial co-occurrence of distant relatives) and higher phylogenetic diversity. In western China, the flora shows more recent divergence (mean divergence times of 15.29-18.86 Mya), pronounced phylogenetic clustering (co-occurrence of close relatives) and lower phylogenetic diversity. Analyses of species-level phylogenetic diversity using simulated branch lengths yielded results similar to genus-level patterns. Our analyses indicate that eastern China represents a floristic museum, and western China an evolutionary cradle, for herbaceous genera; eastern China has served as both a museum and a cradle for woody genera. These results identify areas of high species richness and phylogenetic diversity, and provide a foundation on which to build conservation efforts in China.


Assuntos
Biodiversidade , Magnoliopsida/classificação , Filogenia , China , Conservação dos Recursos Naturais/métodos , Evolução Molecular , Mapeamento Geográfico , Análise de Regressão , Análise Espaço-Temporal
3.
Mol Phylogenet Evol ; 186: 107870, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406952

RESUMO

The deciduous broad-leaved forests (DBLFs) cover large temperate and subtropical high-altitude regions in the Northern Hemisphere. They are home to rich biodiversity, especially to numerous endemic and relict species. However, we know little about how this vegetation in the Northern Hemisphere has developed through time. Here, we used Actaea (Ranunculaceae), an herbaceous genus almost exclusively growing in the understory of the Northern Hemisphere DBLFs, to shed light on the historical assembly of this biome in the Northern Hemisphere. We present a complete species-level phylogenetic analysis of Actaea based on five plastid and nuclear loci. Using the phylogenetic framework, we estimated divergence times, ancestral ranges, and diversification rates. Phylogenetic analyses strongly support Actaea as monophyletic. Sections Podocarpae and Oligocarpae compose a clade, sister to all other Actaea. The sister relationship between sections Chloranthae and Souliea is strongly supported. Section Dichanthera is not monophyletic unless section Cimicifuga is included. Actaea originated in East Asia, likely the Qinghai-Tibet Plateau, in the late Paleocene (c. 57 Ma), and subsequently dispersed into North America in the middle Eocene (c. 43 Ma) via the Thulean bridge. Actaea reached Europe twice, Japan twice, and Taiwan once, and all these five colonization events occurred in the late Miocene-early Pliocene, a period when sea level dropped. Actaea began to diversify at c. 43 Ma. The section-level diversification took place at c. 27-37 Ma and the species-level diversification experienced accelerations twice, which occurred at c. 15 Ma and c. 5 Ma, respectively. Our findings suggest that the Northern Hemisphere DBLFs might have risen in the middle Eocene and further diversified in the late Eocene-Oligocene, middle Miocene and early Pliocene, in association with climatic deterioration during these four periods.


Assuntos
Actaea , Ranunculaceae , Filogenia , Filogeografia , Florestas
4.
Mol Phylogenet Evol ; 186: 107868, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394080

RESUMO

Rapid diversification of a group is often associated with exploiting an ecological opportunity and/or the evolution of a key innovation. However, how the interplay of such abiotic and biotic factors correlates with organismal diversification has been rarely documented in empirical studies, especially for organisms inhabiting drylands. Fumarioideae is the largest subfamily in Papaveraceae and is mainly distributed in temperate regions of the Northern Hemisphere. Here, we used one nuclear (ITS) and six plastid (rbcL, atpB, matK, rps16, trnL-F, and trnG) DNA sequences to investigate the spatio-temporal patterns of diversification and potential related factors of this subfamily. We first present the most comprehensive phylogenetic analysis of Fumarioideae to date. The results of our integrated molecular dating and biogeographic analyses indicate that the most recent common ancestor of Fumarioideae started to diversify in Asia during the Upper Cretaceous, and then dispersed multiple times out of Asia in the Cenozoic. In particular, we discover two independent dispersal events from Eurasia to East Africa in the late Miocene, suggesting that the Arabian Peninsula might be an important exchange corridor between Eurasia and East Africa in the late Miocene. Within the Fumarioideae, increased speciation rates were detected in two groups, Corydalis and Fumariinae. Corydalis first experienced a burst of diversification in its crown group at âˆ¼ 42 Ma, and further accelerated diversification from the mid-Miocene onwards. During these two periods, Corydalis had evolved diverse life history types, which could have facilitated the colonization of diverse habitats originating from extensive orogenesis in the Northern Hemisphere as well as Asian interior desertification. Fumariinae underwent a burst of diversification at âˆ¼ 15 Ma, which temporally coincides with the increasing aridification in central Eurasia, but is markedly posterior to the shifts in habitat (from moist to arid) and in life history (from perennial to annual) and to range expansion from Asia to Europe, suggesting that Fumariinae species may have been pre-adapted to invade European arid habitats by the acquisition of annual life history. Our study provides an empirical case that documents the importance of pre-adaptation on organismal diversification in drylands and highlights the significant roles of the synergy of abiotic and biotic factors in promoting plant diversification.


Assuntos
Papaveraceae , Filogenia , Ásia , Ecossistema , Sequência de Bases , Filogeografia
5.
Mol Phylogenet Evol ; 181: 107712, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693534

RESUMO

Angiosperms, a trigger for the Cretaceous Terrestrial Revolution (KTR), underwent a rapid expansion and occupied all the environments during the Mid-Upper Cretaceous. Yet, Cretaceous biogeographic patterns and processes underlying the distribution of angiosperm diversity in the Northern Hemisphere are still poorly known. Here, we elucidated the biogeographic diversification of the angiosperm family Papaveraceae, an ancient Northern Hemisphere clade characterized by poor dispersal ability and high level of regional endemism. Based on both plastome and multi-locus datasets, we reconstructed a robust time-calibrated phylogeny that includes all currently recognized 45 genera of this family. Within the time-calibrated phylogenetic framework, we conducted 72 biogeographic analyses by testing the sensitivity of uncertainties of area delimitation, maxarea constraints, and the parameters of the model, i.e., j (describing jump-dispersal events) and w (modifying dispersal multiplier matrices), to ancestral range estimations. We also inferred ancestral habitat and ecological niches. Phylogenetic analyses strongly support Papaveraceae as monophyletic. Pteridophylloideae is strongly supported as sister to Hypecoideae-Fumarioideae. Our results indicate that the j parameter and number of predefined areas strongly affect ancestral range estimates, generating questionable ancestral ranges, whereas maxarea constraint and w parameter have no effect and improve model fit. After accounting for these uncertainties, our results indicate that Papaveraceae differentiated in Asian wet forests during the Lower Cretaceous and subsequently occupied the Asian and western North American arid and open areas. Three dispersals from Asia to western North America via the Bering land bridge occurred in the Mid-Upper Cretaceous, largely in agreement with the KTR. Habitat shift and ecological niche divergence resulted in the subsequent disjunctions between Asia and western North America. These findings suggest that the interplay of range expansion and niche divergence-driven vicariance might have shaped Cretaceous biogeographic patterns of angiosperms with Papaveraceae-like ecological requirements and dispersal abilities in the Northern Hemisphere, hence contributing to the knowledge on the geographic expansion of angiosperms during the KTR.


Assuntos
Magnoliopsida , Papaver , Papaveraceae , Filogenia , Filogeografia
6.
Proc Biol Sci ; 288(1948): 20210281, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33823668

RESUMO

The evolutionary history of organisms with poor dispersal abilities usually parallels geological events. Collisions of the Indian and Arabian plates with Eurasia greatly changed Asian topography and affected regional and global climates as well as biotic evolution. However, the geological evolution of Asia related to these two collisions remains debated. Here, we used Eranthis, an angiosperm genus with poor seed dispersal ability and a discontinuous distribution across Eurasia, to shed light on the orogenesis of the Qinghai-Tibetan, Iranian and Mongolian Plateaus. Our phylogenetic analyses show that Eranthis comprises four major geographical clades: east Qinghai-Tibetan Plateau clade (I-1), North Asian clade (I-2), west Qinghai-Tibetan Plateau clade (II-1) and Mediterranean clade (II-2). Our molecular dating and biogeographic analyses indicate that within Eranthis, four vicariance events correlate well with the two early uplifts of the Qinghai-Tibetan Plateau during the Late Eocene and the Oligocene-Miocene boundary and the two uplifts of the Iranian Plateau during the Middle and Late Miocene. The origin and divergence of the Mongolian Plateau taxa are related to the two uplifts of the Mongolian Plateau during the Middle and Late Miocene. Additionally, our results are in agreement with the hypothesis that the central part of Tibet only reached an altitude of less than 2.3 km at approximately 40 Ma. This study highlights that organismal evolution could be related to the formation of the three great Asian plateaus, hence contributing to the knowledge on the timing of the key tectonic events in Asia.


Assuntos
Ranunculaceae , Ásia , Irã (Geográfico) , Filogenia , Filogeografia , Tibet
7.
Mol Phylogenet Evol ; 151: 106910, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32702526

RESUMO

The subtropical evergreen broadleaved forests (EBLFs) inhabit large areas of East Asia and harbor rich biodiversity and high endemism. However, the origin and evolution of biodiversity of East Asian subtropical EBLFs remain poorly understood. Here, we used Mahonia (Berberidaceae), an eastern Asian-western North American disjunct evergreen genus, to obtain new insights into the historical assembly of this biome. We present the most comprehensive phylogenetic analysis of Mahonia do date based on six nuclear and plastid loci. Using the phylogenetic framework, we estimated divergence times, reconstructed ancestral ranges, inferred evolutionary shift of habitats, and estimated diversification rates. Mahonia and each of its two groups (Orientales and Occidentales) are strongly supported as monophyletic. Mahonia originated in western North America during the late Eocene (c. 40.41 Ma) and subsequently dispersed into East Asia prior to the early Oligocene (c. 32.65 Ma). The North Atlantic Land Bridge might have played an important role in population exchanges of Mahonia between East Asia and western North America. The western North American Occidentales began to diversify in summer-dry climates and open landscapes in the early Miocene, whereas the eastern Asian Orientales began to diversify in subtropical EBLFs in the early Miocene and furthermore had a rapid lineage accumulation since the late Miocene. The net diversification rate of Mahonia in eastern Asia appeared to be higher than that in western North America, which is ascribed to lower extinction rates and ecological opportunity. Our findings suggest that western North America is a source of biodiversity of East Asian subtropical EBLFs. This biome in eastern Asia began to rise in the early Miocene and further diversified in the late Miocene, driven by the intensifying East Asian summer monsoon during these two periods.


Assuntos
Evolução Biológica , Florestas , Mahonia/classificação , Mahonia/genética , Filogeografia , Clima Tropical , Ecossistema , Ásia Oriental , Humanos , Filogenia , Fatores de Tempo
8.
Cladistics ; 36(5): 447-457, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-34618951

RESUMO

Temperate South American-Asian disjunct distributions are the most unusual in organisms, and challenging to explain. Here, we address the origin of this unusual disjunction in Lardizabalaceae using explicit models and molecular data. The family (c.40 species distributed in ten genera) also provides an opportunity to explore the historical assembly of East Asian subtropical evergreen broadleaved forests, a typical and luxuriant vegetation in East Asia. DNA sequences of five plastid loci of 42 accessions representing 23 species of Lardizabalaceae (c. 57.5% of estimated species diversity), and 19 species from the six other families of Ranunculales, were used to perform phylogenetic analyses. By dating the branching events and reconstructing ancestral ranges, we infer that extant Lardizabalaceae dated to the Upper Cretaceous of East Asia and that the temperate South American lineage might have split from its East Asian sister group at c. 24.4 Ma. A trans-Pacific dispersal possibly by birds from East Asia to South America is plausible to explain the establishment of the temperate South American-East Asian disjunction in Lardizabalaceae. Diversification rate analyses indicate that net diversification rates of Lardizabalaceae experienced a significant increase around c. 7.5 Ma. Our findings suggest that the rapid rise of East Asian subtropical evergreen broadleaved forests occurred in the late Miocene, associated with the uplift of the Tibetan Plateau and the intensified East Asian monsoon, as well as the higher winter temperature and atmospheric CO2 levels.


Assuntos
Ranunculales/classificação , Ranunculales/genética , DNA de Plantas , Ásia Oriental , Florestas , Oceano Pacífico , Filogenia , Plastídeos/genética , Análise de Sequência de DNA
9.
Mol Phylogenet Evol ; 136: 44-52, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951922

RESUMO

Neotropical rainforests cover about half of the world's tropical rainforests and house most of the biodiversity available on Earth. Australasia has been suggested as a potential source for Neotropical diversity. However, it remains unclear whether megathermal lineages could indeed have migrated to South America though Antarctica. The Neotropical Anomospermeae (Menispermaceae) consists of large, canopy lianas and is entirely restricted to tropical lowland rainforests. The sister relationship identified between this group and its Australasian ally represents an excellent model to test hypotheses regarding past connections between those landmasses. In this study, we used six chloroplast and two nuclear DNA markers to reconstruct phylogenetic relationships within the Neotropical Anomospermeae (Menispermaceae). The phylogeny of this group was then used as basis to reconstruct its biogeographical history. The phylogenetic framework reconstructed here strongly supports the monophyly of the Neotropical Anomospermeae and recovers the species of Anomospermum in three different clades: (i) Anomospermum sect. Anomospermum plus Orthomene; (ii) Anomospermum grandifolium and A. solimoesanum (Anomospermum sect. Elissarrhena); and (iii) Anomospermum bolivianum (Anomospermum sect. Elissarrhena). Each of these clades is recognized as a different genus and the necessary taxonomic changes are proposed. Furthermore, the Neotropical Anomospermeae seems to have split from its Australasian sister-group at c. 62 Ma. Ancestral area reconstructions support an Australasian origin for the Neotropical Anomospermeae, providing additional support for the hypothesis that Australasia is a source of Neotropical diversity, with megathermal lineages having dispersed via Antarctica. The Neotropical Anomospermeae differentiated in the late Eocene and subsequently diversified rapidly into seven lineages, suggesting that Neotropical lowland rainforests resembling modern rainforests physiognomically and structurally might not have developed until the late Eocene. The Neotropical Anomospermeae exemplifies the contributions of Australasian migration to Neotropical diversity.


Assuntos
Loci Gênicos , Menispermaceae/classificação , Menispermaceae/genética , Filogenia , Filogeografia , Clima Tropical , Regiões Antárticas , Australásia , Biodiversidade , Núcleo Celular/genética , Variação Genética , Funções Verossimilhança , América do Sul , Fatores de Tempo
10.
BMC Evol Biol ; 18(1): 74, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29793422

RESUMO

BACKGROUND: Numerous studies have favored dispersal (colonization) over vicariance (past fragmentation) events to explain eastern Asian-North American distribution patterns. In plants, however the disjunction between eastern Asia and western North America has been rarely examined using the integration of phylogenetic, molecular dating, and biogeographical methods. Meanwhile, the biogeographic patterns within eastern Asia remain poorly understood. The goldthread genus Coptis Salisb. includes 15 species disjunctly distributed in North America, Japan, mainland China, and Taiwan. We present a dated phylogeny for Coptis under the optimal clock model and infer its historical biogeography by comparing different biogeographic models. RESULTS: The split of Coptis and Xanthorhiza Marshall occurred in the middle Miocene (ca. 15.47 Ma). Coptis started their diversification in the early late Miocene (ca. 9.55 Ma). A late Miocene vicariance event resulted in the eastern Asian and western North American disjunction in the genus. Within eastern Asia, dispersals from mainland Asia to Japan and from Japan to Taiwan occurred at ca. 4.85 Ma and at ca. 1.34 Ma, respectively. CONCLUSIONS: Our analyses provide evidence that both vicariance and dispersal events have played important roles in shaping the current distribution and endemism of Coptis, likely resulting from eustatic sea-level changes, mountain formation processes and an increasing drier and cooler climate from the middle Miocene onwards.


Assuntos
Coptis/classificação , Filogeografia , Teorema de Bayes , Ásia Oriental , Modelos Biológicos , América do Norte , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
11.
Mol Phylogenet Evol ; 107: 594-604, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28025001

RESUMO

East Asia is characterized by high levels of species diversity and endemism. However, the biogeographical patterns and processes underlying the distribution of biodiversity within the area are still poorly known. In this study, we used plastid (matK, trnL-F, and trnH-psbA) and nuclear (ITS) DNA sequences to investigate the historical biogeography of Dichocarpum (Ranunculaceae), an eastern Asian endemic genus throughout warm-temperate and subtropical forests of the area. Phylogenetic analyses strongly support Dichocarpum as monophyletic, which contains two major clades. Clade I corresponds to section Hutchinsonia, and clade II includes sections Dichocarpum and Fargesia. Section Dichocarpum and its subsections Dalzielia and Dichocarpum are not recognized as monophyletic. Our results suggest that the most recent common ancestor of Dichocarpum occurred in central China and Japan in the earliest Early Miocene, and thus support an ancient vicariance event between Japan and China. Within mainland China, three migrations at the species level were hypothesized to explain the expansion of Dichocarpum from central China to southeastern Yunnan, Hengduan mountains, and eastern Himalaya. These migration events occurred in the Late Miocene to Early Pliocene, which may be associated with the uplift of the southeastern Qinghai-Tibetan Plateau and accordingly the expansion of subtropical forests in China around that period. A migration or dispersal from central China to Taiwan was inferred in the Early Pleistocene, which supports the close floristic affinity between Taiwan and mainland China. This study contributes to our knowledge on the historical biogeography of plants in eastern Asia.


Assuntos
Filogenia , Filogeografia , Ranunculaceae/classificação , Ranunculaceae/genética , Ásia Oriental , Ácidos Graxos Insaturados/genética , Variação Genética , Funções Verossimilhança
12.
Sci China Life Sci ; 67(4): 803-816, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38087029

RESUMO

Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.


Assuntos
Evolução Molecular , Magnoliopsida , Filogenia , Ranunculales , Genômica , Magnoliopsida/genética , Ecossistema , Fósseis
14.
Front Plant Sci ; 14: 1160535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229102

RESUMO

Trichosporeae is the largest and most taxonomically difficult tribe of Gesneriaceae due to its diverse morphology. Previous studies have not clarified the phylogenetic relationships within this tribe on several DNA markers, including the generic relationships within subtribes. Recently, plastid phylogenomics have been successfully employed to resolve the phylogenetic relationships at different taxonomic levels. In this study, plastid phylogenomics were used to explore the relationships within Trichosporeae. Eleven plastomes of Hemiboea were newly reported. Comparative analyses, phylogeny and morphological character evolution within Trichosporeae were conducted on 79 species representing seven subtribes. The Hemiboea plastomes range from 152,742 bp to 153,695 bp in length. Within Trichosporeae, the sampled plastomes range from 152,196 bp to 156,614 bp and GC content from 37.2% to 37.8%. A total of 121-133 genes were annotated in each species, including 80-91 protein-coding genes, 34-37 tRNA genes, and 8 rRNA genes. The contraction and expansion of IR borders were not detected, and gene rearrangements and inversions did not occur. The 13 hypervariable regions were proposed as the potential molecular markers for species identification. A total of 24,299 SNPs and 3,378 indels were inferred, and most of the SNPs were functionally missense and silent variations. There were 1968 SSRs, 2055 tandem repeats and 2802 dispersed repeats. The RSCU and ENC values indicated that the codon usage pattern was conserved in Trichosporeae. Both the phylogenetic frameworks based on the whole plastome and 80 CDSs were basically concordant. The sister relationships between Loxocarpinae and Didymocarpinae were confirmed, and Oreocharis was a sister group of Hemiboea with high support. The morphological characters showed a complex evolutionary pattern of Trichosporeae. Our findings may contribute to future research on genetic diversity, morphological evolutionary patterns, and conservation of the tribe Trichosporeae.

15.
Front Plant Sci ; 13: 897843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668810

RESUMO

Thalictrum is a phylogenetically and economically important genus in the family Ranunculaceae, but is also regarded as one of the most challengingly difficult in plants for resolving the taxonomical and phylogenetical relationships of constituent taxa within this genus. Here, we sequenced the complete plastid genomes of two Thalictrum species using Illumina sequencing technology via de novo assembly. The two Thalictrum plastomes exhibited circular and typical quadripartite structure that was rather conserved in overall structure and the synteny of gene order. By updating the previously reported plastome annotation of other nine Thalictrum species, we found that the expansion or contraction of the inverted repeat region affect the boundary of the single-copy regions in Thalictrum plastome. We identified eight highly variable noncoding regions-infA-rps8, ccsA-ndhD, trnSUGA-psbZ, trnHGUG-psbA, rpl16-rps3, ndhG-ndhI, ndhD-psaC, and ndhJ-ndhK-that can be further used for molecular identification, phylogenetic, and phylogeographic in different species. Selective pressure and codon usage bias of all the plastid coding genes were also analyzed for the 11 species. Phylogenetic relationships showed Thalictrum is monophyly and divided into two major clades based on 11 Thalictrum plastomes. The availability of these plastomes offers valuable genetic information for accurate identification of species and taxonomy, phylogenetic resolution, and evolutionary studies of Thalictrum, and should assist with exploration and utilization of Thalictrum plants.

16.
Sci Rep ; 6: 27259, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251635

RESUMO

The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We found that Ranunculaceae became differentiated in forests between about 108-90 Ma. Diversification rates markedly elevated during the Campanian, mainly resulted from the rapid divergence of the non-forest lineages, but did not change across the Cretaceous-Paleogene boundary. Our data for Ranunculaceae indicate that forest-dwelling ADHFs may have appeared almost simultaneously with angiosperm-dominated forests during the mid-Cretaceous, whereas non-forest ADHFs arose later, by the end of the Cretaceous terrestrial revolution. Furthermore, ADHFs were relatively unaffected by the Cretaceous-Paleogene mass extinction.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Ranunculaceae/crescimento & desenvolvimento , Biodiversidade , Evolução Biológica , Ecossistema , Extinção Biológica , Magnoliopsida/genética , Filogenia , Ranunculaceae/genética
17.
PLoS One ; 11(4): e0153127, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27044035

RESUMO

Coptis (Ranunculaceae) contains 15 species and is one of the pharmaceutically most important plant genera in eastern Asia. Understanding of the evolution of morphological characters and phylogenetic relationships within the genus is very limited. Here, we present the first comprehensive phylogenetic analysis of the genus based on two plastid and one nuclear markers. The phylogeny was reconstructed using Bayesian inference, as well as maximum parsimony and maximum likelihood methods. The Swofford-Olsen-Waddell-Hillis and Bayesian tests were used to assess the strength of the conflicts between traditional taxonomic units and those suggested by the phylogenetic inferences. Evolution of morphological characters was inferred using Bayesian method to identify synapomorphies for the infrageneric lineages. Our data recognize two strongly supported clades within Coptis. The first clade contains subgenus Coptis and section Japonocoptis of subgenus Metacoptis, supported by morphological characters, such as traits of the central leaflet base, petal color, and petal shape. The second clade consists of section Japonocoptis of subgenus Metacoptis. Coptis morii is not united with C. quinquefolia, in contrast with the view that C. morii is a synonym of C. quinquefolia. Two varieties of C. chinensis do not cluster together. Coptis groenlandica and C. lutescens are reduced to C. trifolia and C. japonica, respectively. Central leaflet base, sepal shape, and petal blade carry a strong phylogenetic signal in Coptis, while leaf type, sepal and petal color, and petal shape exhibit relatively higher levels of evolutionary flexibility.


Assuntos
Evolução Biológica , Coptis/classificação , Coptis/genética , Filogenia , Código de Barras de DNA Taxonômico , Genes de Plantas , Fenótipo , Plantas Medicinais/classificação , Plantas Medicinais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa