Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Sci Food Agric ; 104(7): 3902-3912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38264943

RESUMO

BACKGROUND: Cyclophosphamide (Cy) is a frequently used chemotherapeutic drug, but long-term Cy treatment can cause immunosuppression and intestinal mucosal damage. The intestinal mucosal barrier and gut flora play important roles in regulating host metabolism, maintaining physiological functions and protecting immune homeostasis. Dysbiosis of the intestinal flora affects the development of the intestinal microenvironment, as well as the development of various external systemic diseases and metabolic syndrome. RESULTS: The present study investigated the influence of sciadonic acid (SA) on Cy-induced immunosuppression in mice. The results showed that SA gavage significantly alleviated Cy-induced immune damage by improving the immune system organ index, immune response and oxidative stress. Moreover, SA restored intestinal morphology, improved villus integrity and activated the nuclear factor κB signaling pathway, stimulated cytokine production, and reduced serum lipopolysaccharide (LPS) levels. Furthermore, gut microbiota analysis indicated that SA increased t beneficial bacteria (Alistipes, Lachnospiraceae_NK4A136_group, Rikenella and Odoribacter) and decreased pathogenic bacteria (norank-f-Oscillospiraceae, Ruminococcus and Desulfovibrio) to maintain intestinal homeostasis. CONCLUSION: The present study provided new insights into the SA regulation of intestinal flora to enhance immune responses. © 2024 Society of Chemical Industry.


Assuntos
Ácidos Araquidônicos , Microbioma Gastrointestinal , Animais , Camundongos , Terapia de Imunossupressão , Bacteroidetes , Ciclofosfamida/efeitos adversos , Imunidade
2.
Small ; : e2308739, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054629

RESUMO

Building of metal-organic frameworks (MOFs) homogeneous hydrogels made by spontaneous crystallization remains a significant challenge. Inspired by anisotropically structured materials in nature, an oriented super-assembly strategy to construct micro-scale MOFs superstructure is reported, in which the strong intermolecular interactions between zirconium-oxygen (Zr─O) cluster and glutamic acid are utilized to drive the self-assembly of flexible nanoribbons into pumpkin-like microspheres. The confined effect between water-flexible building blocks and crosslinked hydrogen networks of superstructures achieved a mismatch transformation of MOFs powders into homogeneous hydrogels. Importantly, the elastic and rigid properties of hydrogels can be simply controlled by precise modulation of coordination and self-assembly for anisotropic superstructure. Experimental results and theoretical calculations demonstrates that MOFs anisotropic superstructure exhibits dynamic double networks with a superior water harvesting capacity (119.73 g g-1 ) accompanied with heavy metal removal (1331.67 mg g-1 ) and strong mechanical strength (Young's modulus of 0.3 GPa). The study highlights the unique possibility of tailoring MOFs superstructure with homogeneous hydrogel behavior for application in diverse fields.

3.
J Sci Food Agric ; 103(7): 3353-3366, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36750436

RESUMO

BACKGROUND: Type 2 diabetes (T2D) mellitus is a major metabolic disease, and its incidence and lethality have increased significantly in recent years, making it a serious threat to human health. Among numerous previous studies, polysaccharides have been shown to alleviate the adverse effects of T2D, but there are still problems such as insufficient analysis and poor understanding of the mechanisms by which polysaccharides, especially those of marine origin, regulate T2D. METHODS: In this study, we used multiple allosteric approaches to further investigate the regulatory effects of mussel polysaccharides (MPs) on T2D and gut microbiota disorders in mice by identifying changes in genes, proteins, metabolites and target organs associated with glucolipid metabolism using an animal model of T2D fed with high-fat diets, and to explore the underlying molecular mechanisms. RESULTS: After MP intervention, serum levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and high-density lipoprotein cholesterol (HDL-C) were up-regulated, and blood glucose and lipid levels were effectively reduced in T2D mice. Activation of signaling molecules related to the upstream and downstream of the insulin PI3K/Akt signaling pathway reduced hepatic insulin resistance. The relative abundance of short-chain fatty acid (SCFA)-producing bacteria (including Akkermansia, Siraeum Eubacterium and Allobaculum) increased and harmful desulfurizing Vibrio decreased. In addition, the levels of SCFAs were increased. CONCLUSION: These results suggest that MP can increase SCFA levels by altering the abundance of intestinal flora, thereby activating the PI3K/Akt signaling pathway and exerting hypoglycemic effects. © 2023 Society of Chemical Industry.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Insulina , Polissacarídeos/química , Dieta Hiperlipídica/efeitos adversos
4.
Mar Drugs ; 19(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436295

RESUMO

The intestinal flora is recognized as a significant contributor to the immune system. In this research, the protective effects of oyster peptides on immune regulation and intestinal microbiota were investigated in mice treated with cyclophosphamide. The results showed that oyster peptides restored the indexes of thymus, spleen and liver, stimulated cytokines secretion and promoted the relative mRNA levels of Th1/Th2 cytokines (IL-2, IFN-γ, IL-4 and IL-10). The mRNA levels of Occludin, Claudin-1, ZO-1, and Mucin-2 were up-regulated, and the NF-κB signaling pathway was also activated after oyster peptides administration. Furthermore, oyster peptides treatment reduced the proportion of Firmicutes/Bacteroidetes, increased the relative abundance of Alistipes, Lactobacillus, Rikenell and the content of short-chain fatty acids, and reversed the composition of intestinal microflora similar to that of normal mice. In conclusion, oyster peptides effectively ameliorated cyclophosphamide-induced intestinal damage and modified gut microbiota structure in mice, and might be utilized as a beneficial ingredient in functional foods for immune regulation.


Assuntos
Gastroenterite/tratamento farmacológico , Fatores Imunológicos/farmacologia , Ostreidae , Peptídeos/farmacologia , Animais , Organismos Aquáticos , Ciclofosfamida , Citocinas/metabolismo , Modelos Animais de Doenças , Gastroenterite/induzido quimicamente , Gastroenterite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Imunossupressores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia , Organismos Livres de Patógenos Específicos
5.
Mar Drugs ; 19(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34436307

RESUMO

Considerable literature has been published on polysaccharides, which play a critical role in regulating the pathogenesis of inflammation and immunity. In this essay, the anti-inflammatory effect of Mytilus coruscus polysaccharide (MP) on lipopolysaccharide-stimulated RAW264.7 cells and a dextran sulfate sodium (DSS)-induced ulcerative colitis model in mice was investigated. The results showed that MP effectively promoted the proliferation of RAW264.7 cells, ameliorated the excessive production of inflammatory cytokines (TNF-α, IL-6, and IL-10), and inhibited the activation of the NF-κB signaling pathway. For DSS-induced colitis in mice, MP can improve the clinical symptoms of colitis, inhibit the weight loss of mice, reduce the disease activity index, and have a positive effect on the shortening of the colon caused by DSS, meliorating intestinal barrier integrity and lowering inflammatory cytokines in serum. Moreover, MP makes a notable contribution to the richness and diversity of the intestinal microbial community, and also regulates the structural composition of the intestinal flora. Specifically, mice treated with MP showed a repaired Firmicutes/Bacteroidetes ratio and an increased abundance of some probiotics like Anaerotruncus, Lactobacillus, Desulfovibrio, Alistipe, Odoribacter, and Enterorhabdus in colon. These data suggest that the MP could be a promising dietary candidate for enhancing immunity and protecting against ulcerative colitis.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Mytilus , Polissacarídeos/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Organismos Aquáticos , Sulfato de Dextrana , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fitoterapia , Polissacarídeos/uso terapêutico , Células RAW 264.7/efeitos dos fármacos
6.
Mar Drugs ; 19(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652919

RESUMO

Bioactive peptides isolated from marine organisms have shown to have potential anti-inflammatory effects. This study aimed to investigate the intestinal protection effect of low molecular peptides (Mw < 1 kDa) produced through enzymatic hydrolysis of tuna processing waste (tuna bioactive peptides (TBP)) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in BALB/c mice. Here, we randomly divided twenty-four male BALB/c mice into four groups: (i) normal (untreated), (ii) DSS-induced model colitis, (iii) low dose TBP+DSS-treated (200 mg/kg/d), and (iv) high dose TBP+DSS-treated groups (500 mg/kg/d). The results showed that TBP significantly reduced mice weight loss and improved morphological and pathological characteristics of colon tissues. In addition, it increased the activities of antioxidant enzymes (SOD and GSH-Px) and decreased inflammatory factors (LPS, IL-6, and TNF-α) expression. TBP increased the gene expression levels of some tight junction (TJ) proteins. Moreover, TBP increased the short-chain fatty acids (SCFAs) levels and the diversity and imbalance of intestinal flora. Therefore, TBP plays some protective roles in the intestinal tract by enhancing antioxidant and anti-inflammatory abilities of the body, improving the intestinal barrier and metabolic abnormalities, and adjusting intestinal flora imbalance.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Peptídeos/isolamento & purificação , Atum/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
7.
J Gastroenterol Hepatol ; 35(11): 1978-1989, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32027419

RESUMO

BACKGROUND AND AIM: Non-alcoholic fatty liver disease (NAFLD) is a growing public health concern worldwide. With the progression of urbanization, light pollution is becoming an inevitable risk factor for NAFLD. However, the role of light pollution on NAFLD is insufficiently understood, and the underlying mechanism remains unclear. The present study explored effects of constant light exposure on NAFLD and elucidated its related mechanisms. METHODS: Thirty-two male Sprague Dawley rats were divided into four groups (n = 8 each): (i) rats on a normal diet exposed to standard light-dark cycle (ND-LD); (ii) rats on a normal diet exposed to constant light (ND-LL); (iii) rats on a high-fat diet exposed to standard light-dark cycle (HFD-LD); and (iv) and rats on a high-fat diet exposed to constant light (HFD-LL). After 12 weeks of treatment, rats were sacrificed and pathophysiological assessments were performed. Targeted lipidomics was used to measure sphingolipids, including ceramides, glucosylceramides, and lactosylceramides, sphingomyelins, and sphingosine-1-phosphates in plasma and liver tissues. RESULTS: In normal chow rats, constant light exposure led to glucose abnormalities and dyslipidemia. In high-fat-fed rats, constant light exposure exacerbated glucose abnormalities, dyslipidemia, insulin resistance, and inflammation and aggravated steatohepatitis. Compared with HFD-LD rats, HFD-LL had decreased plasma sphingosine-1-phosphate and elevated liver concentrations of total ceramide and specific ceramide species (ceramide d18:0/24:0, ceramide d18:1/22:0, ceramide d18:1/24:0, and ceramide d18:1/24:1), which were associated with increased hepatocyte apoptosis. CONCLUSIONS: Constant light exposure causes dysregulation of sphingolipids and promotes steatohepatitis in high-fat-fed rats.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Exposição Ambiental/efeitos adversos , Luz/efeitos adversos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Esfingolipídeos/metabolismo , Animais , Glicemia/metabolismo , Ceramidas/sangue , Ceramidas/metabolismo , Escuridão , Progressão da Doença , Dislipidemias/etiologia , Lipidômica/métodos , Masculino , Ratos Sprague-Dawley , Fatores de Risco , Esfingolipídeos/sangue
8.
Fish Shellfish Immunol ; 87: 470-477, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30708055

RESUMO

Interleukin-8 (IL-8 or chemokine (C-X-C motif) ligand 8, CXCL8) is a chemokine produced by multiple cell types. It promotes chemotaxis and phagocytosis via interaction with chemokine receptors CXCR1 and CXCR2. Using published data, IL-8 gene (LcIL-8) of the large yellow croaker (Larimichthys crocea) was cloned into the pcDNA3.1 plasmid, and an interleukin-8 receptor (LcCXCR2) was cloned into the pEGFP-N1 plasmid. Secratory expression of LcIL-8 in HEK293T cells was carried out, and product in culture medium was collected for LcCXCR2 stimulation in HEK293 cells. Following receptor internalization observation and intracellular signaling detection, the functional interaction of LcIL-8 and LcCXCR2 was further determined and the ERK phosphorylation signal activation mediated by LcCXCR2 was demonstrated. Quantitative real-time PCR analysis was used to analyze transcription level regulation of LcIL-8 and LcCXCR2 in various tissues of large yellow croaker. Expression of LcIL-8 and LcCXCR2 was elevated in the spleen, head kidney, and liver after Vibrio parahemolyticus challenge. Results illustrated the functional interaction between LcIL-8 and LcCXCR2 in mediating intracellular ERK1/2 phosphorylation signaling and suggested that the LcIL-8 and LcCXCR2 system is part of the immune response induced by V. Parahemolyticus in L. crocea.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Interleucina-8/genética , Perciformes/genética , Perciformes/imunologia , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/genética , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Células HEK293 , Humanos , Interleucina-8/imunologia , Receptores de Interleucina-8A/imunologia , Receptores de Interleucina-8B/imunologia
9.
Fish Shellfish Immunol ; 84: 825-833, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30248404

RESUMO

The black seabream (Sparus macrocephlus) is an economically pivotal aquaculture species cultured in China and Southeast Asian countries. To understand the molecular immune mechanisms underlying the response to Vibrio parahaemolyticus, a comparative gene transcription analysis were performed with utilized fresh livers of V. parahaemolyticus-immunized Sparus macrocephlus with a control group through RNA-Seq technology. A total of 256663 contigs were obtained after excluded the low-quality sequences and assembly. The average length of contigs collected from this research is 1066.93 bp. Furthermore, blast analysis indicates 30747 contigs were annotated based on homology with matches in the NT, NR, gene, and string databases. A gene ontology analysis was employed to classify 21598 genes according to three major functional categories: molecular function, cellular component, and biological process. A total of 14470 genes were discovered in 303 KEGG pathways. RSEM and EdgeR were introduced to estimate 3841 genes significantly different expressed (False Discovery Rate<0.001) which includes 4072 up-regulated genes and 3771 down-regulated genes. A significant enrichment analysis of these differentially expressed genes and isogenes were conducted to reveal the major immune-related pathways which refer to the toll-like receptor, complement, coagulation cascades, and chemokine signaling pathways. In addition, 92175 potential simple sequence repeats (SSRs) and 121912 candidate single nucleotide polymorphisms (SNPs) were detected and identified sequencely in the Sparus macrocephlus liver transcriptome. This research characterized a gene expression pattern for normal and the V. parahaemolyticus -immunized Sparus macrocephlus for the first time and not only sheds new light on the molecular mechanisms underlying the host-V. parahaemolyticus interaction but contribute to facilitate future studies on Sparus macrocephlus gene expression and functional genomics.


Assuntos
Doenças dos Peixes/imunologia , Imunidade Inata/genética , Fígado/metabolismo , Perciformes/genética , Perciformes/imunologia , Transcriptoma/imunologia , Animais , Perfilação da Expressão Gênica , Ontologia Genética , Fígado/imunologia , Repetições de Microssatélites , Perciformes/metabolismo , Polimorfismo de Nucleotídeo Único , Vibrioses/imunologia , Vibrioses/veterinária , Vibrio parahaemolyticus/fisiologia
10.
Mar Drugs ; 17(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669387

RESUMO

Low molecular weight seleno-aminopolysaccharide (LSA) is an organic selenium compound comprising selenium and low molecular weight aminopolysaccharide (LA), a low molecular weight natural linear polysaccharide derived from chitosan. LSA has been found to exert strong pharmacological activity. In this study, we aimed to investigate the protective effect of LSA on intestinal mucosal oxidative stress in a weaning piglet model by detecting the growth performance, intestinal mucosal structure, antioxidant indices, and expression level of intracellular transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its related factors. Our results indicated that LSA significantly increased the average daily gain and feed/gain (p < 0.05), suggesting that LSA can effectively promote the growth of weaning piglets. The results of scanning electron microscope (SEM) microscopy showed that LSA effectively reduced intestinal damage, indicating that LSA improved the intestinal stress response and protected the intestinal structure integrity. In addition, diamine oxidase (DAO) and d-lactic acid (d-LA) levels remarkably decreased in LSA group compared with control group (p < 0.05), suggesting that LSA alleviated the damage and permeability of weaning piglets. LSA significantly increased superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) levels, but decreased malondialdehyde (MDA) level, indicating that LSA significantly enhanced the antioxidant capacity and reduced oxidative stress in weaning piglets. RT-PCR results showed that LSA significantly increased GSH-Px1, GSH-Px2, SOD-1, SOD-2, CAT, Nrf2, HO-1, and NQO1 gene expression (p < 0.05). Western blot analysis revealed that LSA activated the Nrf2 signaling pathway by downregulating the expression of Keap1 and upregulating the expression of Nrf2 to protect intestinal mucosa against oxidative stress. Collectively, LSA reduced intestinal mucosal damage induced by oxidative stress via Nrf2-Keap1 pathway in weaning stress of infants.


Assuntos
Quitosana/administração & dosagem , Diarreia Infantil/dietoterapia , Suplementos Nutricionais , Mucosa Intestinal/efeitos dos fármacos , Selênio/administração & dosagem , Animais , Animais Lactentes , Quitosana/química , Diarreia Infantil/etiologia , Diarreia Infantil/patologia , Modelos Animais de Doenças , Humanos , Lactente , Mucosa Intestinal/patologia , Mucosa Intestinal/ultraestrutura , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Microscopia Eletrônica de Varredura , Peso Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selênio/química , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico , Sus scrofa , Resultado do Tratamento , Desmame
11.
Int J Mol Sci ; 20(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731602

RESUMO

Low molecular seleno-aminopolysaccharide (LSA) was synthesized with sodium selenite and low molecular aminopolysaccharide (LA), which is an organic selenium compound. This study is aimed to investigate the protective effect of LSA on the intestinal mucosal barrier in weaning stress rats by detecting the intestinal tissue morphology and function, mucosal thickness and permeability, the structure of MUC2, antioxidant index, the expression level of intracellular transcription factor NF-E2-related factor 2 (Nrf2), and its related factors. The results showed that LSA significantly increased the height of intestinal villi (p < 0.05) and increased the thickness of intestinal mucosa and the number of goblet cells, which indicated that LSA has a protective effect on the intestinal mucosal barrier that is damaged by weaning. Moreover, LSA significantly reduced the level of DAO, D-LA, and LPS compared with the weaning group (p < 0.05), which indicated that LSA reduced the intestinal damage and permeability of weaning rats. In addition, LSA could increase the number and length of glycans chains and the abundance of acid glycans structures in the MUC2 structure, which indicated that LSA alleviated the changes of intestinal mucus protein structure. LSA significantly increased the levels of GSH-Px, SOD, LDH, and CAT, while it decreased the level of MDA in serum and intestinal tissue, which suggested that LSA significantly enhanced the antioxidant capacity and reduced oxidative stress of weaning rats. RT-PCR results showed that LSA significantly increased the expression level of antioxidant genes (GSH-Px, SOD, Nrf2, HO-1), glycosyltransferase genes (GalNT1, GalNT3, GalNT7) and mucin gene (MUC2) in intestinal mucosa (p < 0.05). The results of western blot showed that the LSA activated the Nrf2 signaling pathway by down-regulating the expression of Keap1and up-regulating the expression of Nrf2, and protected the intestinal mucosa from oxidative stress. Overall, LSA could play a protective role in intestinal mucosal barrier of weaning rats by activating the Nrf2 pathway and alleviating the alnormal change of mucin MUC2.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Selênio/química , Animais , Antioxidantes/metabolismo , Western Blotting , Masculino , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/química , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Desmame
12.
Mar Drugs ; 14(9)2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27657093

RESUMO

Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKß, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines.

13.
J Invertebr Pathol ; 128: 37-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25912089

RESUMO

Baculoviruses have been known to induce hyperactive behavior in their lepidopteran hosts for over a century. As a typical lepidopteran insect, the silkworm Bombyx mori displays enhanced locomotor activity (ELA) following infection with B. mori nucleopolyhedrovirus (BmNPV). Some investigations have focused on the molecular mechanisms underlying this abnormal hyperactive wandering behavior due to the virus; however, there are currently no reports about B. mori. Based on previous studies that have revealed that behavior is controlled by the central nervous system, the transcriptome profiles of the brains of BmNPV-infected and non-infected silkworm larvae were analyzed with the RNA-Seq technique to reveal the changes in the BmNPV-infected brain on the transcriptional level and to provide new clues regarding the molecular mechanisms that underlies BmNPV-induced ELA. Compared with the controls, a total of 742 differentially expressed genes (DEGs), including 218 up-regulated and 524 down-regulated candidates, were identified, of which 499, 117 and 144 DEGs could be classified into GO categories, KEGG pathways and COG annotations by GO, KEGG and COG analyses, respectively. We focused our attention on the DEGs that are involved in circadian rhythms, synaptic transmission and the serotonin receptor signaling pathway of B. mori. Our analyses suggested that these genes were related to the locomotor activity of B. mori via their essential roles in the regulations of a variety of behaviors and the down-regulation of their expressions following BmNPV infection. These results provide new insight into the molecular mechanisms of BmNPV-induced ELA.


Assuntos
Bombyx/virologia , Encéfalo/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Atividade Motora , Nucleopoliedrovírus , Animais , Perfilação da Expressão Gênica , Atividade Motora/fisiologia , Reação em Cadeia da Polimerase , Transcriptoma
14.
Mar Drugs ; 13(10): 6210-25, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26437419

RESUMO

Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner.


Assuntos
Adjuvantes Imunológicos/farmacologia , Quitosana/farmacologia , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Adjuvantes Imunológicos/química , Animais , Linhagem Celular , Quitosana/química , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Camundongos , Peso Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
iScience ; 27(4): 109412, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510121

RESUMO

Addressing the equitable distribution of global carbon emission rights is critical for sustainable development. Our research develops a detailed framework for a Global Carbon Reduction Alliance based on regional cooperation strategies, identifying key modes of intracontinental proximity and intercontinental distance collaboration. It emphasizes alliances formed among high carbon emission right countries and leadership-driven models propelling low carbon emission right countries, offering insights for optimizing emission reduction efforts. The analysis highlights the strategic role of developing nations in Africa and Asia, as well as developed regions in Europe and North America, advocating for the adoption of clean energy, enhancement of forest economic value, acceleration of urbanization, and an increased contribution of the service sector to the economy as essential pathways to achieving net-zero emissions. Our approach advocates for a comprehensive model of global carbon reduction cooperation, aiming at the equitable distribution of carbon emission rights and supporting the sustainable development goals.

16.
Mol Nutr Food Res ; 68(14): e2300453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38389187

RESUMO

To explore the potential mechanism of action of Tegillarca granosa polysaccharide (TGP) in treating nonalcoholic fatty liver disease (NAFLD), the study conducts in vivo experiments using male C57BL/6 mice fed a high-fat diet while administering TGP for 16 weeks. The study measures body weight, liver weight, serum biochemical markers, pathological histology, liver lipid accumulation, oxidative stress and inflammation-related factors, lipid synthesis and metabolism-related gene and protein expression, and the composition and abundance of intestinal flora. Additionally, short-chain fatty acid (SCFAs) content and the correlation between intestinal flora and environmental factors are measured. The results show that TGP effectively reduces excessive hepatic lipid accumulation, dyslipidemia, abnormal liver function, and steatosis in the mice with NAFLD. Moreover, TGP effectively regulates intestinal flora disorder, increases the diversity of intestinal flora, and affects the relative abundance of specific bacteria while also increasing the content of SCFAs. These findings provide a basis for exploring the regulatory effect of T. granosa polysaccharide on NAFLD based on intestinal flora and highlight its potential as a natural liver nutraceutical.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Polissacarídeos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Masculino , Polissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ácidos Graxos Voláteis/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos
17.
Foods ; 13(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39272433

RESUMO

The oil derived from Psidium guajava seeds (TKSO) exhibits an abundance of diverse unsaturated fatty acids, notably oleic, linoleic, and α-linolenic acids, conferring substantial health advantages in addressing metabolic irregularities and human diseases. This research endeavor focused on elucidating the impacts of TKSO on colonic inflammatory responses and intestinal microbiota alterations in a murine model of colitis induced by dextran sulfate sodium (DSS), demonstrated that substantial supplementation with TKSO reduces the severity of colitis induced by DSS. Furthermore, TKSO effectively attenuated the abundance and expression of proinflammatory mediators while augmenting the expression of tight junction proteins in DSS-challenged mice. Beyond this, TKSO intervention modulated the intestinal microbial composition in DSS-induced colitis mice, specifically by enhancing the relative presence of Lactobacillus, Norank_f_Muribaculaceae, and Lachnospiraceae_NK4A136_group, while concurrently diminishing the abundance of Turicibacter. Additionally, an analysis of short-chain fatty acids (SCFAs) revealed noteworthy elevations in acetic, propionic, isobutyric, and butyric acids, and total SCFAs levels in TKSO-treated mice. In summary, these findings underscore the potential of TKSO to reduce the severity of colitis induced by DSS in mice through intricate modulation of the intestinal microbiota, metabolite profiles, and intestinal barrier repair, thereby presenting a promising avenue for the development of therapeutic strategies against intestinal inflammatory conditions.

18.
Metabolites ; 14(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39195539

RESUMO

To investigate difference in the quality of the different parts (back, tail muscles, and fish skin) of Opsariichthys bidens from pond and rice field cultures, a comparative study was conducted in terms of nutritional composition, volatile flavor profiles and gut microbiota. In detail, the texture, free amino acids, fatty acids were further assessed. The results suggested that the moisture content, crude protein and crude fat content in the skin of O. bidens are higher than those in the back and tail muscles, regardless of breeding modes. The fish cultured in the rice field had a higher protein content than those from the pond culture, while the fat content of the rice field-cultured fish was significantly low compared to the fish from the pond culture, especially in the back and tail parts. A total of 43 volatile components were detected by Gas Chromatography-Mass Spectrometry (GC-MS), with a maximum of 18 types of aldehydes and the highest concentration being nonanal. Compared to pond cultures, the fish from the rice field cultures showed more abundant flavor composition and odor-active compounds. The total content of DHA (Docosahexaenoic Acid) and EPA (Eicosapentaenoic Acid) in the rice field-cultured fish was higher than that of the pond group, while no significant disparity in amino acid composition was observed (p > 0.05). Comparative and clustering analyses of gut microbiota revealed notable discrepancies in the gut microbiota of O. bidens from two aquaculture systems. However, an inherent correlation between the gut microbiome and meat quality would be further emphasized in further studies. This study can offer a theoretical reference for the development of high-quality aquatic products by selecting the appropriate aquaculture models.

19.
Foods ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123544

RESUMO

Obesity has become one of the most serious chronic diseases threatening human health. Its onset and progression are closely related to the intestinal microbiota, as disruption of the intestinal flora promotes the production of endotoxins and induces an inflammatory response. This study aimed to investigate the variations in the physicochemical properties of various refined tea seed oils and their impact on intestinal microbiota disorders induced by a high-fat diet (HFD) through dietary intervention. In the present study, C57BL/6J mice on a HFD were randomly divided into three groups: HFD, T-TSO, and N-TSO. T-TSO and N-TSO mice were given traditionally refined and optimized tea seed oil for 12 weeks. The data revealed that tea seed oil obtained through degumming at 70 °C, deacidification at 50 °C, decolorization at 90 °C, and deodorization at 180 °C (at 0.06 MPa for 1 h) effectively removed impurities while minimizing the loss of active ingredients. Additionally, the optimized tea seed oil mitigated fat accumulation and inflammatory responses resulting from HFD, and reduced liver tissue damage in comparison to traditional refining methods. More importantly, N-TSO can serve as a dietary supplement to enhance the diversity and abundance of intestinal microbiota, increasing the presence of beneficial bacteria (norank_f__Muribaculaceae, Lactobacillus, and Bacteroides) while reducing pathogenic bacteria (Alistipes and Mucispirillum). Therefore, in HFD-induced obese C57BL/6J mice, N-TSO can better ameliorate obesity compared with a T-TSO diet, which is promising in alleviating HFD-induced intestinal microbiota disorders.

20.
Sci Total Environ ; 924: 171512, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453081

RESUMO

The presence of pesticide residues in aquatic environments poses a significant threat to both aquatic ecosystems and human health. The presence of these residues can result in significant harm to aquatic ecosystems and can negatively impact the health of aquatic organisms. Consequently, this issue requires urgent attention and effective measures to mitigate its impact. However, developing sensitive and rapid detection methods remains a challenge. In this study, an all-in-one test strip, which integrated bioenzymes, nanoenzymes, and a chromogen, was developed in combination with an enzyme labeling instrument for a highly sensitive and convenient sensing of malathion residues. The oxidase activity of heme chloride (Hemin) in the strip can catalyze the oxidation of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue-colored oxide. Simultaneously, the alkaline phosphatase (ALP) present in the strip can break down l-ascorbic acid-2-phosphate to produce ascorbic acid (AA). This AA then acts to reduce the oxidized form of TMB, turning it into a colorless substance and leading to the disappearance of its fluorescent signal. In the presence of a pesticide, the activity of ALP is inhibited and formation of AA is blocked, thereby preventing the reduction of oxidized TMB and producing a colored signal. According to this principle, the integrated test strip detected the target pesticide with high performance as per the optical density value determined via an enzyme marker. The detection limit of the test strip was 0.209 ng/mL with good sensitivity. The method was used for detecting malathion in actual river water samples, and the recoveries were in the range of 93.53 %-96.87 %. The newly devised technique effectively identified malathion in samples of natural water. This research has introduced a novel approach for the precise and convenient surveillance of pesticide remnants. Additionally, these discoveries could inspire the advancement of proficient multi-enzyme detection systems.


Assuntos
Malation , Praguicidas , Humanos , Ecossistema , Peróxido de Hidrogênio , Limite de Detecção , Corantes/química , Fosfatase Alcalina , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa