Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; : 142611, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878983

RESUMO

Bromophenols has been proven to synthesize hydroxylated polybrominated diphenyl ethers (OH-PBDEs), which may pose additional environmental and health risks in the process of bioremediation. In this study, the removal of 2,4-dibromophenol (2,4-DBP) and 2,4,6-tribromophenol (2,4,6-TBP) and the biosynthetic of OH-PBDEs by Prorocentrum donghaiense were explored. The removal efficiencies of 2,4-DBP and 2,4,6-TBP ranged from 32.71% to 76.89% and 31.15% to 78.12%, respectively. Low concentrations of 2,4-DBP stimulated algal growth, while high concentrations were inhibitory. Furthermore, exposure to 10.00 mg L-1 2,4-DBP resulted in the detection of 2'-hydroxy-2,3',4,5'-tetrabromodiphenyl ether (2'-OH-BDE-68) within P. donghaiense. In contrast, increasing concentrations of 2,4,6-TBP considerably inhibited P. donghaiense growth, with 4'-hydroxy-2,3',4,5',6-pentabromodiphenyl ether (4'-OH-BDE-121) detected within P. donghaiense under 5.00 mg L-1 2,4,6-TBP. Metabolomic analysis further revealed that the synthesized OH-PBDEs exhibited higher toxicity than their precursors and identified the oxidative coupling as a key biosynthetic mechanism. These findings confirm the capacity of P. donghaiense to remove bromophenols and biosynthesize OH-PBDEs from bromophenols, offering valuable insights into formulating algal bioremediation to mitigate bromophenol contamination.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa