RESUMO
The miniaturization and low power consumption characteristics of RF MEMS (Radio Frequency Microelectromechanical System) switches provide new possibilities for the development of microsatellites and nanosatellites, which will play an increasingly important role in future space missions. This paper provides a comprehensive review of RF MEMS switches in satellite communication, detailing their working mechanisms, performance optimization strategies, and applications in reconfigurable antennas. It explores various driving mechanisms (electrostatic, piezoelectric, electromagnetic, thermoelectric) and contact mechanisms (capacitive, ohmic), highlighting their advantages, challenges, and advancements. The paper emphasizes strategies to enhance switch reliability and RF performance, including minimizing the impact of shocks, reducing driving voltage, improving contacts, and appropriate packaging. Finally, it discusses the enormous potential of RF MEMS switches in future satellite communications, addressing their technical advantages, challenges, and the necessity for further research to optimize design and manufacturing for broader applications and increased efficiency in space missions. The research findings of this review can serve as a reference for further design and improvement of RF MEMS switches, which are expected to play a more important role in future aerospace communication systems.
RESUMO
In this work, we present a simple and active mechanism for manipulating the photonic spin Hall effect (SHE) of an InP-based layered structure by taking advantage of the alterable refractive index of InP via bias-assisted carrier injection. The photonic SHE of transmitted light for both H- and V-polarized beams is quite sensitive to the intensity of the bias-assisted light. The spin shift can reach its giant value under the optimal intensity of bias light, which corresponds to the proper refractive index of InP induced by the photon-induced carrier injection. Except for the modulation of the bias light intensity, there is another method to manipulate the photonic SHE by adjusting the wavelength of bias light. We found that this method of tuning the bias light wavelength is more effective for H-polarized light than for the V-polarized light.
RESUMO
The photonic spin Hall effect (SHE), manifesting itself as spin-dependent splitting of light, holds potential applications in nano-photonic devices and precision metrology. However, the photonic SHE is generally weak, and therefore its enhancement is of great significance. In this paper, we propose a simple method for enhancing the photonic SHE of reflected light by taking advantage of the gradient-refractive-index (GRIN) material. The transverse shifts for a normal (homogeneous) layer and linear GRIN structure with three different types (singly increasing, singly decreasing, and doubly linear ones) are theoretically investigated. We found that the doubly linear GRIN materials exhibit the prominent photonic SHE of reflected light, which is mainly due to the Fabry-Perot resonance. By optimizing the thickness and the lower (higher) refractive index of the doubly linear GRIN layer, the transverse shift for a horizontally polarized incident beam can nearly reach its upper limitation (i.e., half of the beam waist). These findings provide us a potential method to enhance the photonic SHE, and therefore establish a strong foundation for developing spin-based photonic devices in the future.