Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Immunity ; 57(1): 1-3, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38198847

RESUMO

TREM2 is exclusively expressed by microglia in the brain and is strongly associated with Alzheimer's disease risk. In this issue of Immunity, Tagliatti et al. shed light on a novel role of TREM2 in shaping neuronal bioenergetics during development.


Assuntos
Microglia , Neurônios , Encéfalo
2.
Immunity ; 56(8): 1794-1808.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442133

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is strongly linked to Alzheimer's disease (AD) risk, but its functions are not fully understood. Here, we found that TREM2 specifically attenuated the activation of classical complement cascade via high-affinity binding to its initiator C1q. In the human AD brains, the formation of TREM2-C1q complexes was detected, and the increased density of the complexes was associated with lower deposition of C3 but higher amounts of synaptic proteins. In mice expressing mutant human tau, Trem2 haploinsufficiency increased complement-mediated microglial engulfment of synapses and accelerated synaptic loss. Administration of a 41-amino-acid TREM2 peptide, which we identified to be responsible for TREM2 binding to C1q, rescued synaptic impairments in AD mouse models. We thus demonstrate a critical role for microglial TREM2 in restricting complement-mediated synaptic elimination during neurodegeneration, providing mechanistic insights into the protective roles of TREM2 against AD pathogenesis.


Assuntos
Doença de Alzheimer , Complemento C1q , Camundongos , Animais , Humanos , Complemento C1q/genética , Complemento C1q/metabolismo , Encéfalo/metabolismo , Sinapses/metabolismo , Ativação do Complemento , Microglia/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
3.
Plant Cell ; 36(5): 1637-1654, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38114096

RESUMO

MicroRNAs (miRNAs) are a class of nonprotein-coding short transcripts that provide a layer of post-transcriptional regulation essential to many plant biological processes. MiR858, which targets the transcripts of MYB transcription factors, can affect a range of secondary metabolic processes. Although miR858 and its 187-nt precursor have been well studied in Arabidopsis (Arabidopsis thaliana), a systematic investigation of miR858 precursors and their functions across plant species is lacking due to a problem in identifying the transcripts that generate this subclass. By re-evaluating the transcript of miR858 and relaxing the length cut-off for identifying hairpins, we found in kiwifruit (Actinidia chinensis) that miR858 has long-loop hairpins (1,100 to 2,100 nt), whose intervening sequences between miRNA generating complementary sites were longer than all previously reported miRNA hairpins. Importantly, these precursors of miR858 containing long-loop hairpins (termed MIR858L) are widespread in seed plants including Arabidopsis, varying between 350 and 5,500 nt. Moreover, we showed that MIR858L has a greater impact on proanthocyanidin and flavonol levels in both Arabidopsis and kiwifruit. We suggest that an active MIR858L-MYB regulatory module appeared in the transition of early land plants to large upright flowering plants, making a key contribution to plant secondary metabolism.


Assuntos
Actinidia , Arabidopsis , Regulação da Expressão Gênica de Plantas , MicroRNAs , RNA de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Actinidia/genética , Actinidia/metabolismo , Arabidopsis/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sequência de Bases
4.
Mol Cell ; 73(2): 250-263.e5, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30527662

RESUMO

Metazoan chromosomes are sequentially partitioned into topologically associating domains (TADs) and then into smaller sub-domains. One class of sub-domains, insulated neighborhoods, are proposed to spatially sequester and insulate the enclosed genes through self-association and chromatin looping. However, it has not been determined functionally whether promoter-enhancer interactions and gene regulation are broadly restricted to within these loops. Here, we employed published datasets from murine embryonic stem cells (mESCs) to identify insulated neighborhoods that confine promoter-enhancer interactions and demarcate gene regulatory regions. To directly address the functionality of these regions, we depleted estrogen-related receptor ß (Esrrb), which binds the Mediator co-activator complex, to impair enhancers of genes within 222 insulated neighborhoods without causing mESC differentiation. Esrrb depletion reduces Mediator binding, promoter-enhancer looping, and expression of both nascent RNA and mRNA within the insulated neighborhoods without significantly affecting the flanking genes. Our data indicate that insulated neighborhoods represent functional regulons in mammalian genomes.


Assuntos
Cromossomos de Mamíferos , Elementos Facilitadores Genéticos , Elementos Isolantes , Células-Tronco Embrionárias Murinas/fisiologia , Regiões Promotoras Genéticas , Transcrição Gênica , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Bases de Dados Genéticas , Regulação para Baixo , Camundongos , Ligação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Coesinas
5.
Plant J ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761127

RESUMO

Most of kiwifruit cultivars (e.g. Actinidia chinensis cv. Donghong, "DH") were sensitive to waterlogging, thus, waterlogging resistant rootstocks (e.g. Actinidia valvata Dunn, "Dunn") were widely used for kiwifruit industry. Those different species provided ideal materials to understand the waterlogging responses in kiwifruit. Compared to the weaken growth and root activities in "DH", "Dunn" maintained the relative high root activities under the prolonged waterlogging. Based on comparative analysis, transcript levels of pyruvate decarboxylase (PDCs) and alcohol dehydrogenase (ADHs) showed significantly difference between these two species. Both PDCs and ADHs had been significantly increased by waterlogging in "DH", while they were only limitedly triggered by 2 days stress and subsided during the prolonged waterlogging in "Dunn". Thus, 19 differentially expressed transcript factors (DETFs) had been isolated using weighted gene co-expression network analysis combined with transcriptomics and transcript levels of PDCs and ADHs in waterlogged "DH". Among these DETFs, dual luciferase and electrophoretic mobility shift assays indicated AcMYB68 could bind to and trigger the activity of AcPDC2 promoter. The stable over-expression of AcMYB68 significantly up-regulated the transcript levels of PDCs but inhibited the plant growth, especially the roots. Moreover, the enzyme activities of PDC in 35S::AcMYB68 were significantly enhanced during the waterlogging response than that in wild type plants. Most interestingly, comparative analysis indicated that the expression patterns of AcMYB68 and the previously characterized AcERF74/75 (the direct regulator on ADHs) either showed no responses (AcMYB68 and AcERF74) or very limited response (AcERF75) in "Dunn". Taken together, the restricted responses of AcMYB68 and AcERF74/75 in "Dunn" endow its waterlogging tolerance.

6.
Plant Physiol ; 193(1): 840-854, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37325946

RESUMO

As the harvest season of most fruit is concentrated, fruit maturation manipulation is essential for the fresh fruit industry to prolong sales time. Gibberellin (GA), an important phytohormone necessary for plant growth and development, has also shown a substantial regulatory effect on fruit maturation; however, its regulatory mechanisms remain inconclusive. In this research, preharvest GA3 treatment effectively delayed fruit maturation in several persimmon (Diospyros kaki) cultivars. Among the proteins encoded by differentially expressed genes, 2 transcriptional activators (NAC TRANSCRIPTION FACTOR DkNAC24 and ETHYLENE RESPONSIVE FACTOR DkERF38) and a repressor (MYB-LIKE TRANSCRIPTION FACTOR DkMYB22) were direct regulators of GERANYLGERANYL DIPHOSPHATE SYNTHASE DkGGPS1, LYSINE HISTIDINE TRANSPORTER DkLHT1, and FRUCTOSE-BISPHOSPHATE ALDOLASE DkFBA1, respectively, resulting in the inhibition of carotenoid synthesis, outward transport of an ethylene precursor, and consumption of fructose and glucose. Thus, the present study not only provides a practical method to prolong the persimmon fruit maturation period in various cultivars but also provides insights into the regulatory mechanisms of GA on multiple aspects of fruit quality formation at the transcriptional regulation level.


Assuntos
Diospyros , Giberelinas , Giberelinas/farmacologia , Giberelinas/metabolismo , Diospyros/genética , Diospyros/metabolismo , Frutas/metabolismo , Etilenos/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Exp Bot ; 75(1): 204-218, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712824

RESUMO

The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.


Assuntos
Actinidia , Humanos , Actinidia/genética , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
BMC Nephrol ; 25(1): 195, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862887

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common and serious condition, particularly among elderly patients. It is associated with high morbidity and mortality rates, further compounded by the need for continuous renal replacement therapy in severe cases. To improve clinical decision-making and patient management, there is a need for accurate prediction models that can identify patients at a high risk of mortality. METHODS: Data were extracted from the Dryad Digital Repository. Multivariate analysis was performed using least absolute shrinkage and selection operator (LASSO) logistic regression analysis to identify independent risk factors and construct a predictive nomogram for mortality within 28 days after continuous renal replacement therapy in elderly patients with acute kidney injury. The discrimination of the model was evaluated in the validation cohort using the area under the receiver operating characteristic curve (AUC), and calibration was evaluated using a calibration curve. The clinical utility of the model was assessed using decision curve analysis (DCA). RESULTS: A total of 606 participants were enrolled and randomly divided into two groups: a training cohort (n = 424) and a validation cohort (n = 182) in a 7:3 proportion. A risk prediction model was developed to identify independent predictors of 28-day mortality in elderly patients with AKI. The predictors included age, systolic blood pressure, creatinine, albumin, phosphorus, age-adjusted Charlson Comorbidity Index (CCI), Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and sequential organ failure assessment (SOFA) score. These predictors were incorporated into a logistic model and presented in a user-friendly nomogram. In the validation cohort, the model demonstrated good predictive performance with an AUC of 0.799. The calibration curve showed that the model was well calibrated. Additionally, DCA revealed significant net benefits of the nomogram for clinical application. CONCLUSION: The development of a nomogram for predicting 28-day mortality in elderly patients with AKI receiving continuous renal replacement therapy has the potential to improve prognostic accuracy and assist in clinical decision-making.


Assuntos
Injúria Renal Aguda , Terapia de Substituição Renal Contínua , Nomogramas , Humanos , Feminino , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/terapia , Masculino , Idoso , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Estudos de Coortes , Fatores de Risco , Medição de Risco/métodos
9.
BMC Musculoskelet Disord ; 25(1): 479, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890706

RESUMO

BACKGROUND: This work aimed to investigate the change in fingerprint depth and the recovery rule of fingerprint biological recognition function after repairing finger abdominal defects and rebuilding fingerprint with a free flap. METHOD: From April 2018 to March 2023, we collected a total of 43 cases of repairing finger pulp defects using the free flap of the fibular side of the great toe with the digital nerve. After surgery, irregular follow-up visits were conducted to observe fingerprint clarity, perform the ninhydrin test or detect visible sweating with the naked eye. We recorded fingerprint clarity, nail shape, two-point discrimination, cold perception, warm perception and fingerprint recognition using smartphones. The reconstruction process of the repaired finger was recorded to understand the changes in various observation indicators and their relationship with the depth of the fingerprint. The correlation between fingerprint depth and neural repair was determined, and the process of fingerprint biological recognition function repair was elucidated. RESULT: All flaps survived, and we observed various manifestations in different stages of nerve recovery. The reconstructed fingerprint had a clear fuzzy process, and the depth changes of the fingerprint were consistent with the changes in the biological recognition function curve. CONCLUSION: The free flap with the digital nerve is used to repair finger pulp defects. The reconstructed fingerprint has a biological recognition function, and the depth of the fingerprint is correlated with the process of nerve repair. The fingerprint morphology has a dynamic recovery process, and it can reach a stable state after 6-8 months.


Assuntos
Traumatismos dos Dedos , Retalhos de Tecido Biológico , Lesões dos Tecidos Moles , Humanos , Masculino , Feminino , Adulto , Retalhos de Tecido Biológico/transplante , Retalhos de Tecido Biológico/inervação , Pessoa de Meia-Idade , Traumatismos dos Dedos/cirurgia , Lesões dos Tecidos Moles/cirurgia , Adulto Jovem , Recuperação de Função Fisiológica , Procedimentos de Cirurgia Plástica/métodos , Dedos do Pé/cirurgia , Dedos do Pé/inervação , Dedos/inervação , Dedos/cirurgia , Resultado do Tratamento , Fíbula/transplante , Fíbula/cirurgia , Adolescente , Idoso
10.
Ann Gen Psychiatry ; 23(1): 16, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720347

RESUMO

BACKGROUND: Adolescents with depression who engage in non-suicidal self harming behaviors are more likely to adopt negative coping strategies when faced with negative events. Therefore, these patients should be introduced to positive coping strategies. Evidences have showed that mindfulness-based interventions can positively impact the psychology of patients with mental disorders. This study was to explore the impact of a combination of mindfulness therapy and mentalization-based family therapy (MBFT) on suicidal ideation in adolescents with depressive disorder. METHODS: Eighty adolescent patients with depression and suicidal ideation admitted to our hospital from September 2021 to February 2022 were selected as subjects. They were divided into a control group and a study group using the random number table method, with each group comprising 40 subjects. The control group received MBFT, whereas the study group received both mindfulness therapy and MBFT. The psychological status and suicidal ideations of the two groups were compared before and after the intervention. RESULTS: The psychological health scores of both groups of patients were lower after the intervention, with the scores of the study group being lower than those of the control group (P < 0.05). The scores on the suicidal ideation scales for both groups were lower after intervention, and the study group scored lower than the control group (P < 0.05). The absolute values of the differences in psychological health scale scores and suicidal ideation scale scores before and after the intervention were higher in the study group than in the control group (P < 0.05). CONCLUSION: The combination of mindfulness therapy and MBFT can improve the psychological condition of adolescents with depression, reduce their suicidal ideations, and help them develop a healthy and positive outlook toward life, making this method worthy of clinical recommendation.

11.
BMC Surg ; 24(1): 167, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807080

RESUMO

BACKGROUND: To explore the application effect of 3D printing surgical training models in the preoperative assessment of robot-assisted partial nephrectomy. METHODS: Eighty patients who underwent robot-assisted partial nephrectomy surgery between January 2022 and December 2023 were selected and divided into two groups according to the chronological order. The control group (n = 40) received preoperative assessment with verbal and video education from January 2022 to December 2022, while the observation group (n = 40) received preoperative assessment with 3D printing surgical training models combined with verbal and video education from January 2023 to December 2023. The preoperative anxiety, information demand score, and surgical awareness were compared between the two groups. The physiological stress indicators, including interleukin-6 (IL-6), angiotensin II (AT II), adrenocorticotropic hormone (ACTH), cortisol (Cor), mean arterial pressure (MAP), and heart rate (HR), were also measured at different time points before and after surgery.They were 6:00 am on the day before surgery (T0), 6:00 am on the day of the operation (T1), 6:00 am on the first day after the operation (T2), and 6:00 am on the third day after the operation (T3).The preparation rate before surgery was compared between the two groups. RESULTS: The anxiety and surgical information demand scores were lower in the observation group than in the control group before anesthesia induction, and the difference was statistically significant (P < 0.001). Both groups had lower scores before anesthesia induction than before preoperative assessment, and the difference was statistically significant (P < 0.05). The physiological stress indicators at T1 time points were lower in the observation group than in the control group, and the difference was statistically significant (P < 0.05). The overall means of the physiological stress indicators differed significantly between the two groups (P < 0.001). Compared with the T0 time point, the T1, T2, and T3 time points in both groups were significantly lower, and the difference was statistically significant (P < 0.05). The surgical awareness and preparation rate before surgery were higher in the observation group than in the control group, and the difference was statistically significant (P < 0.05). CONCLUSION: The preoperative assessment mode using 3D printing surgical training models combined with verbal and video education can effectively reduce the psychological and physiological stress responses of surgical patients, improve their surgical awareness, and enhance the preparation rate before surgery.


Assuntos
Nefrectomia , Impressão Tridimensional , Procedimentos Cirúrgicos Robóticos , Humanos , Nefrectomia/métodos , Nefrectomia/educação , Procedimentos Cirúrgicos Robóticos/educação , Feminino , Masculino , Pessoa de Meia-Idade , Cuidados Pré-Operatórios/métodos , Adulto , Idoso , Modelos Anatômicos
12.
Nano Lett ; 23(18): 8808-8815, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37459604

RESUMO

The development of advanced electrical equipment necessitates polymer dielectrics with a higher electric strength. Unfortunately, this bottleneck problem has yet to be solved because current material modification methods do not allow direct control of deep traps. Here, we propose a method for directly passivating deep traps. Measurements of nanoscale microregion charge characteristics and trap parameters reveal a significant reduction in the number of deep traps. The resulting polymer dielectric has an impressively high electrical strength, less surface charge accumulation, and a significantly increased flashover voltage and breakdown strength. In addition, the energy storage density is increased without sacrificing the charge-discharge efficiency. This reveals a new approach to increasing the energy storage density by reducing the trap energy levels at the electrode-dielectric interface. We further calculated and analyzed the microscopic physical mechanism of deep trap passivation based on density functional theory and characterized the contributions of orbital composition and orbital hybridization.

13.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 403-409, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660905

RESUMO

Further evidence is needed to explore the impact of high-altitude environments on the neurologic function of neonates. Non-invasive techniques such as cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography can provide data on cerebral oxygenation and brain electrical activity. This study will conduct multiple cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography monitoring sessions at various time points within the first 3 days postpartum for healthy full-term neonates at different altitudes. The obtained data on cerebral oxygenation and brain electrical activity will be compared between different altitudes, and corresponding reference ranges will be established. The study involves 6 participating centers in the Chinese High Altitude Neonatal Medicine Alliance, with altitude gradients divided into 4 categories: 800 m, 1 900 m, 2 400 m, and 3 500 m, with an anticipated sample size of 170 neonates per altitude gradient. This multicenter prospective cohort study aims to provide evidence supporting the impact of high-altitude environments on early brain function and metabolism in neonates.


Assuntos
Altitude , Encéfalo , Eletroencefalografia , Oxigênio , Humanos , Recém-Nascido , Encéfalo/metabolismo , Oxigênio/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Estudos Prospectivos
14.
J Cell Physiol ; 238(5): 896-917, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924082

RESUMO

Heparanase (HPSE; heparanase-1) is an endo-ß-glucuronidase capable of degrading the carbohydrate moiety of heparan sulfate proteoglycans, thus modulating and facilitating the remodeling of the extracellular matrix and basement membrane. HPSE activity is strongly associated with major human pathological complications, including but not limited to tumor progress and angiogenesis. Several lines of literature have shown that overexpression of HPSE leads to enhanced tumor growth and metastatic transmission, as well as poor prognosis. Gene silencing of HPSE or treatment of tumor with compounds that block HPSE activity are shown to remarkably attenuate tumor progression. Therefore, targeting HPSE is considered as a potential therapeutical strategy for the treatment of cancer. Intriguingly, recent findings disclose that heparanase-2 (HPSE-2), a close homolog of HPSE but lacking enzymatic activity, can also regulate antitumor mechanisms. Given the pleiotropic roles of HPSE, further investigation is in demand to determine the precise mechanism of regulating action of HPSE in different cancer settings. In this review, we first summarize the current understanding of HPSE, such as its structure, subcellular localization, and tissue distribution. Furthermore, we systematically review the pro- and antitumorigenic roles and mechanisms of HPSE in cancer progress. In addition, we delineate HPSE inhibitors that have entered clinical trials and their therapeutic potential.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteoglicanas de Heparan Sulfato , Glucuronidase/genética , Matriz Extracelular
15.
BMC Plant Biol ; 23(1): 665, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129795

RESUMO

Under natural conditions, most Hibiscus syriacus L. individuals form very few mature seeds or the mature seeds that do form are of poor quality. As a result, seed yield is poor and seeds have low natural germinability. These phenomena strongly hinder utilization of the excellent germplasm resources of H. syriacus. The study has shown that pollen activity and stigma receptivity were high on the day of anthesis, and the pistils and stamens were fertile. Pollen release and stigma receptivity were synchronous. But in styles following self and cross-pollination, pollen tube abnormalities (distortion and twisting of the pollen tubes) and callose deposition were observed. Cross-pollinated pollen tubes elongated faster and fewer pollen tube abnormalities were observed compared with self-pollinated pollen tubes. And during embryo development, abnormalities during the heart-shaped embryo stage led to embryo abortion. Imbalance in antioxidant enzyme activities and low contents of auxin and cytokinin during early stages of embryo development may affect embryo development. Therefore, a low frequency of outcrossing and mid-development embryo abortion may be important developmental causes of H. syriacus seed abortion. Nutrient deficiencies, imbalance in antioxidant enzyme activities, and a high content of abscisic acid at advanced stages of seed development may be physiological causes of seed abortion.


Assuntos
Hibiscus , Sementes , Antioxidantes , Hibiscus/fisiologia , Pólen , Polinização/fisiologia , Sementes/fisiologia
16.
Plant Biotechnol J ; 21(8): 1695-1706, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37161940

RESUMO

Citrate is a common primary metabolite which often characterizes fruit flavour. The key regulators of citrate accumulation in fruit and vegetables are poorly understood. We systematically analysed the dynamic profiles of organic acid components during the development of kiwifruit (Actinidia spp.). Citrate continuously accumulated so that it became the predominate contributor to total acidity at harvest. Based on a co-expression network analysis using different kiwifruit cultivars, an Al-ACTIVATED MALATE TRANSPORTER gene (AcALMT1) was identified as a candidate responsible for citrate accumulation. Electrophysiological assays using expression of this gene in Xenopus oocytes revealed that AcALMT1 functions as a citrate transporter. Additionally, transient overexpression of AcALMT1 in kiwifruit significantly increased citrate content, while tissues showing higher AcALMT1 expression accumulated more citrate. The expression of AcALMT1 was highly correlated with 17 transcription factor candidates. However, dual-luciferase and EMSA assays indicated that only the NAC transcription factor, AcNAC1, activated AcALMT1 expression via direct binding to its promoter. Targeted CRISPR-Cas9-induced mutagenesis of AcNAC1 in kiwifruit resulted in dramatic declines in citrate levels while malate and quinate levels were not substantially affected. Our findings show that transcriptional regulation of a major citrate transporter, by a NAC transcription factor, is responsible for citrate accumulation in kiwifruit, which has broad implications for other fruits and vegetables.


Assuntos
Ácido Cítrico , Fatores de Transcrição , Ácido Cítrico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Frutas/metabolismo , Malatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
17.
BMC Cancer ; 23(1): 1257, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124049

RESUMO

PURPOSE: To explore the potential role of signal transducer and activator of transcription 5A (STAT5A) in the metastasis of breast cancer, and its mechanism of regulation underlying. METHODS AND RESULTS: TCGA datasets were used to evaluate the expression of STAT5A in normal and different cancerous tissues through TIMER2.0, indicating that STAT5A level was decreased in breast cancer tissues compared with normal ones. Gene Set Enrichment Analysis predicted that STAT5A was associated with the activation of immune cells and cell cycle process. We further demonstrated that the infiltration of immune cells was positively associated with STAT5A level. Influorescence staining revealed the expression and distribution of F-actin was regulated by STAT5A, while colony formation assay, wound healing and transwell assays predicted the inhibitory role of STAT5A in the colony formation, migratory and invasive abilities in breast cancer cells. In addition, overexpression of the Notch3 intracellular domain (N3ICD), the active form of Notch3, resulted in the increased expression of STAT5A. Conversely, silencing of Notch3 expression by siNotch3 decreased STAT5A expression, supporting that STAT5A expression is positively associated with Notch3 in human breast cancer cell lines and breast cancer tissues. Mechanistically, chromatin immunoprecipitation showed that Notch3 was directly bound to the STAT5A promoter and induced the expression of STAT5A. Moreover, overexpressing STAT5A partially reversed the enhanced mobility of breast cancer cells following Notch3 silencing. Low expression of Notch3 and STAT5A predicted poorer prognosis of patients with breast cancer. CONCLUSION: The present study demonstrates that Notch3 inhibits metastasis in breast cancer through inducing transcriptionally STAT5A, which was associated with tumor-infiltrating immune cells, providing a novel strategy to treat breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética , Imunoprecipitação da Cromatina , Receptor Notch3/genética , Proteínas Supressoras de Tumor/genética
18.
Brain Behav Immun ; 113: 275-288, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482204

RESUMO

Over the past decade, compelling genetic evidence has highlighted the crucial role of microglial dysregulation in the development of Alzheimer's disease (AD). As resident immune cells in the brain, microglia undergo dystrophy and senescence during the chronic progression of AD. To explore the potential therapeutic benefits of replenishing the brain with new microglia in AD, we utilized the CSF1R inhibitor PLX3397 to deplete existing microglia and induce repopulation after inhibitor withdrawal in 5xFAD transgenic mice. Our findings revealed the remarkable benefits of microglial repopulation in ameliorating AD-associated cognitive deficits, accompanied by a notable elevation in synaptic proteins and an enhancement of hippocampal long-term potentiation (LTP). Additionally, we observed the profound restoration of microglial morphology and synaptic engulfment following their self-renewal. The impact of microglial repopulation on amyloid pathology is dependent on the duration of repopulation. Transcriptome analysis revealed a high resemblance between the gene expression profiles of repopulated microglia from 5xFAD mice and those of microglia from WT mice. Importantly, the dysregulated neurotrophic signaling pathway and hippocampal neurogenesis in the AD brain are restored following microglial replenishment. Lastly, we demonstrated that the repopulation restores the expression of brain-derived neurotrophic factor (BDNF) in microglia, thereby contributing to synaptic plasticity. In conclusion, our findings provide compelling evidence to support the notion that microglial self-renewal confers substantial benefits to the AD brain by restoring the BDNF neurotrophic signaling pathway. Thus, targeted microglial repopulation emerges as a highly promising and novel therapeutic strategy for alleviating cognitive impairment in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Microglia/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Cognição , Modelos Animais de Doenças
19.
Nutr Cancer ; 75(6): 1464-1472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37140263

RESUMO

TP53-induced glycolysis and apoptosis regulator (TIGAR) acts as a switch for nephropathy, but its underlying mechanism is still unclear. The purpose of this study was to explore the potential biological significance and underlying mechanism of TIGAR in modulating adenine-induced ferroptosis in human proximal tubular epithelial (HK-2) cells. HK-2 cells under- or overexpressing TIGAR were challenged with adenine to induce ferroptosis. The levels of reactive oxygen species (ROS), iron, malondialdehyde (MDA), and glutathione (GSH) were assayed. Expression of ferroptosis-associated solute carrier family seven-member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) at the level of mRNA and protein were measured by quantitative real-time-PCR and western blotting. The phosphorylation levels of proteins in the mTOR/S6KP70 pathway were determined by western blotting. Adenine overload triggered ferroptosis in HK-2 cells, as evidenced by reduced levels of GSH, SLC7A11, and GPX4, and increased levels of iron, MDA, and ROS. TIGAR overexpression repressed adenine-induced ferroptosis and induced mTOR/S6KP70 signaling. Inhibitors of mTOR and S6KP70 weakened the ability of TIGAR to inhibit adenine-induced ferroptosis. TIGAR inhibits adenine-induced ferroptosis in human proximal tubular epithelial cells by activating the mTOR/S6KP70 signaling pathway. Therefore, activating the TIGAR/mTOR/S6KP70 axis may be a treatment for crystal nephropathies.


Assuntos
Ferroptose , Humanos , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Adenina/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Glutationa/metabolismo , Células Epiteliais/metabolismo , Glicólise , Ferro
20.
Connect Tissue Res ; 64(5): 491-504, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37227119

RESUMO

PURPOSE: Osteocytes in vivo exhibit different functional states, but no specific marker to distinguish these is currently available. MATERIALS AND METHODS: To simulate the differentiation process of pre-osteoblasts to osteocytes in vitro, MC3T3-E1 cells were cultured on type I collagen gel and a three-dimensional (3D) culture system was established. The Notch expression of osteocyte-like cells in 3D culture system was compared with that of in situ osteocytes in bone tissues. RESULTS: Immunohistochemistry demonstrated that Notch1 was not detected in "resting" in situ osteocytes, but was detected in normal cultured osteocyte-like cell line MLO-Y4. Osteocytes obtained from conventional osteogenic-induced osteoblasts and long-term cultured MLO-Y4 cells could not replicate the Notch1 expression pattern from in situ osteocytes. From day 14-35 of osteogenic induction, osteoblasts in 3D culture system gradually migrated into the gel to form canaliculus-like structures similar to bone canaliculus. On day 35, stellate-shaped osteocyte-like cells were observed, and expression of DMP1 and SOST, but not Runx2, was detected. Notch1 was not detected by immunohistochemistry, and Notch1 mRNA level was not significantly different from that of in situ osteocytes. In MC3T3-E1 cells, down-regulation of Notch2 increased Notch1, Notch downstream genes (ß-catenin and Nfatc1), and Dmp1. In MLO-Y4 cells, Notch2 decreased after Notch1 siRNA transfection. Downregulation of Notch1 or Notch2 decreased Nfatc1, ß-catenin, and Dmp1, and increased Sost. CONCLUSIONS: We established "resting state" osteocytes using an in vitro 3D model. Notch1 can be a useful marker to help differentiate the functional states of osteocytes (activated vs. resting state).


Assuntos
Osteócitos , beta Catenina , Osteócitos/metabolismo , beta Catenina/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular , Linhagem Celular , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa