Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 134(5): 550-568, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323433

RESUMO

BACKGROUND: Doxorubicin is an effective chemotherapeutic agent, but its use is limited by acute and chronic cardiotoxicity. Exercise training has been shown to protect against doxorubicin-induced cardiotoxicity, but the involvement of immune cells remains unclear. This study aimed to investigate the role of exercise-derived B cells in protecting against doxorubicin-induced cardiotoxicity and to further determine whether B cell activation and antibody secretion play a role in this protection. METHODS: Mice that were administered with doxorubicin (5 mg/kg per week, 20 mg/kg cumulative dose) received treadmill running exercise. The adoptive transfer of exercise-derived splenic B cells to µMT-/- (B cell-deficient) mice was performed to elucidate the mechanism of B cell regulation that mediated the effect of exercise. RESULTS: Doxorubicin-administered mice that had undergone exercise training showed improved cardiac function, and low levels of cardiac apoptosis, atrophy, and fibrosis, and had reduced cardiac antibody deposition and proinflammatory responses. Similarly, B cell pharmacological and genetic depletion alleviated doxorubicin-induced cardiotoxicity, which phenocopied the protection of exercise. In vitro performed coculture experiments confirmed that exercise-derived B cells reduced cardiomyocyte apoptosis and fibroblast activation compared with control B cells. Importantly, the protective effect of exercise on B cells was confirmed by the adoptive transfer of splenic B cells from exercised donor mice to µMT-/- recipient mice. However, blockage of Fc gamma receptor IIB function using B cell transplants from exercised Fc gamma receptor IIB-/- mice abolished the protection of exercise-derived B cells against doxorubicin-induced cardiotoxicity. Mechanistically, we found that Fc gamma receptor IIB, an important B cell inhibitory receptor, responded to exercise and increased B cell activation threshold, which participated in exercise-induced protection against doxorubicin-induced cardiotoxicity. CONCLUSIONS: Our results demonstrate that exercise training protects against doxorubicin-induced cardiotoxicity by upregulating Fc gamma receptor IIB expression in B cells, which plays an important anti-inflammatory role and participates in the protective effect of exercise against doxorubicin-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Camundongos , Animais , Cardiotoxicidade/metabolismo , Miócitos Cardíacos/metabolismo , Doxorrubicina/toxicidade , Apoptose
2.
Circulation ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708602

RESUMO

BACKGROUND: Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored. METHODS: We studied the function of Hmbox1 in exercise-induced physiological cardiac growth in mice after 4 weeks of swimming exercise. Hmbox1 expression was then evaluated in human heart samples from deceased patients with myocardial infarction and in the animal cardiac I/R injury model. Its role in cardiac I/R injury was examined in mice with adeno-associated virus 9 (AAV9) vector-mediated Hmbox1 knockdown and in those with cardiac myocyte-specific Hmbox1 ablation. We performed RNA sequencing, promoter prediction, and binding assays and identified glucokinase (Gck) as a downstream effector of Hmbox1. The effects of Hmbox1 together with Gck were examined in cardiomyocytes to evaluate their cell size, proliferation, apoptosis, mitochondrial respiration, and glycolysis. The function of upstream regulator of Hmbox1, ETS1, was investigated through ETS1 overexpression in cardiac I/R mice in vivo. RESULTS: We demonstrated that Hmbox1 downregulation was required for exercise-induced physiological cardiac growth. Inhibition of Hmbox1 increased cardiomyocyte size in isolated neonatal rat cardiomyocytes and human embryonic stem cell-derived cardiomyocytes but did not affect cardiomyocyte proliferation. Under pathological conditions, Hmbox1 was upregulated in both human and animal postinfarct cardiac tissues. Furthermore, both cardiac myocyte-specific Hmbox1 knockout and AAV9-mediated Hmbox1 knockdown protected against cardiac I/R injury and heart failure. Therapeutic effects were observed when sh-Hmbox1 AAV9 was administered after I/R injury. Inhibition of Hmbox1 activated the Akt/mTOR/P70S6K pathway and transcriptionally upregulated Gck, leading to reduced apoptosis and improved mitochondrial respiration and glycolysis in cardiomyocytes. ETS1 functioned as an upstream negative regulator of Hmbox1 transcription, and its overexpression was protective against cardiac I/R injury. CONCLUSIONS: Our studies unravel a new role for the transcriptional repressor Hmbox1 in exercise-induced physiological cardiac growth. They also highlight the therapeutic potential of targeting Hmbox1 to improve myocardial survival and glucose metabolism after I/R injury.

3.
Basic Res Cardiol ; 119(4): 651-671, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38563985

RESUMO

Exercise improves cardiac function and metabolism. Although long-term exercise leads to circulating and micro-environmental metabolic changes, the effect of exercise on protein post-translational lactylation modifications as well as its functional relevance is unclear. Here, we report that lactate can regulate cardiomyocyte changes by improving protein lactylation levels and elevating intracellular N6-methyladenosine RNA-binding protein YTHDF2. The intrinsic disorder region of YTHDF2 but not the RNA m6A-binding activity is indispensable for its regulatory function in influencing cardiomyocyte cell size changes and oxygen glucose deprivation/re-oxygenation (OGD/R)-stimulated apoptosis via upregulating Ras GTPase-activating protein-binding protein 1 (G3BP1). Downregulation of YTHDF2 is required for exercise-induced physiological cardiac hypertrophy. Moreover, myocardial YTHDF2 inhibition alleviated ischemia/reperfusion-induced acute injury and pathological remodeling. Our results here link lactate and lactylation modifications with RNA m6A reader YTHDF2 and highlight the physiological importance of this innovative post-transcriptional intrinsic regulation mechanism of cardiomyocyte responses to exercise. Decreasing lactylation or inhibiting YTHDF2/G3BP1 might represent a promising therapeutic strategy for cardiac diseases.


Assuntos
Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Masculino , Apoptose , Modelos Animais de Doenças , Camundongos , Processamento de Proteína Pós-Traducional , Ratos
4.
Macromol Rapid Commun ; : e2400245, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012277

RESUMO

Advancements in flexible electronic technology, especially the progress in foldable displays and under-display cameras (UDC), have created an urgent demand for high-performance colorless polyimide (CPI). However, current CPIs lack sufficient heat resistance for substrate applications. In this work, four kinds of rigid spirobifluorene diamines are designed, and the corresponding polyimides are prepared by their condensation with 5,5'-(perfluoropropane-2,2-diyl) bis(isobenzofuran-1,3-dione) (6FDA) or 9,9-bis(3,4-dicarboxyphenyl) fluorene dianhydride (BPAF). The rigid and conjugated spirobifluorene units endow the polyimides with higher glass transition temperature (Tg) ranging from 356 to 468 °C. Their optical properties are regulated by small side groups and spirobifluorene structure with a periodically twisted molecular conformation. Consequently, a series of CPIs with an average transmittance ranging from 75% to 88% and a yellowness index (YI) as low as 2.48 are obtained. Among these, 27SPFTFA-BPAF presents excellent comprehensive performance, with a Tg of 422 °C, a 5 wt.% loss temperature (Td5) of 562 °C, a YI of 3.53, and a tensile strength (δmax) of 140 MPa, respectively. The mechanism underlying the structure-property relationship is investigated by experimental comparison and theoretical calculation, and the proposed method provides a pathway for designing highly rigid conjugated CPIs with excellent thermal stability and transparency for photoelectric engineering.

5.
J Phys Chem A ; 128(22): 4483-4492, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38785354

RESUMO

To elucidate the mechanism and origins of chemo- and enantioselectivities of the reaction between aliphatic aldehydes and hydrazones catalyzed by triazolium-derived NHC, density functional theory computations have been performed. According to our calculated results, the whole catalytic cycle for the formation of dihydropyridazinones proceeds via the initial nucleophilic addition of NHC to an aliphatic aldehyde, followed by the concerted intramolecular proton transfer and C-Cl bond cleavage. Subsequent deprotonation generates an enolate intermediate. The enolate intermediate then undergoes 1,4-addition to hydrazone to construct a new carbon-carbon bond. The following ring-closure would lead to a six-membered ring intermediate, which, upon the release of NHC, affords the final product dihydropyridazinone. The computation results reveal that intramolecular proton transfer is significantly promoted by the Brønsted acid DIPEA·H+. The carbon-carbon bond formation step could determine not only the chemoselectivity but also the stereoselectivity and lead to the S-isomer product. It was found that the stereoselectivity arises from a combination of weak interactions, including C-H···O, C-H···N, C-H···π, and LP···π. NHC could enhance the nucleophilicity of the aliphatic aldehyde and facilitate further reaction with hydrazone. This work could be beneficial for the development of new catalytic strategies in the future.

6.
Rev Cardiovasc Med ; 24(9): 251, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39076378

RESUMO

Exercise training (ET) is an important non-drug adjuvant therapy against many human diseases, including cardiovascular diseases. The appropriate ET intensity induces beneficial adaptions and improves physiological function and cardiopulmonary fitness. The mechanisms of exercise-induced cardioprotective effects are still not fully understood. However, mounting evidence suggest that microRNAs (miRNAs) play crucial role in this process and are essential in responding to exercise-stress and mediating exercise-protective effects. Thus, this review summarizes the biogenesis of miRNAs, the mechanism of miRNA action, and specifically the miRNAs involved in exercise-induced cardio-protection used as therapeutic targets for treating cardiovascular diseases.

7.
Rev Cardiovasc Med ; 23(4): 148, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39076229

RESUMO

Recent evidences have shown that exercise training not only plays a necessary role in maintaining cardiac homeostasis, but also promotes cardiac repair after myocardial infarction. Post-myocardial infarction, exercise training has been observed to effectively increase the maximum cardiac output, and protect myocardial cells against necrosis and apoptosis, thus leading to an improved quality of life of myocardial infarction patients. In fact, exercise training has received more attention as an adjunct therapeutic strategy for both treatment and prevention of myocardial infarction. This review summarizes the experimental evidence of the effects of exercise training in ventricular remodeling after myocardial infarction, and tries to provide theoretical basis along with suitable references for the exercise prescription aimed at prevention and therapy of myocardial infarction.

8.
Mol Aspects Med ; 97: 101274, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653129

RESUMO

Physical exercise has been widely acknowledged as a beneficial lifestyle alteration and a potent non-pharmacological treatment for heart disease. Extensive investigations have revealed the beneficial effects of exercise on the heart and the underlying mechanisms involved. Exercise is considered one of the key factors that can lead to epigenetic alterations. The increasing number of identified molecules in the exercised heart has led to many studies in recent years that have explored the cellular function of ncRNAs and RNA modifications in the heart. Investigating the regulatory role of RNA-mediated epigenetic regulation in exercised hearts will contribute to the development of therapeutic strategies for the management of heart diseases. This review aims to summarize the positive impact of exercise on cardiac health. We will first provide an overview of the mechanisms through which exercise offers protection to the heart. Subsequently, we will delve into the current understanding of ncRNAs, specifically miRNAs, lncRNAs, and circRNAs, as well as RNA modification, focusing on RNA m6A and RNA A-to-I editing, and how they contribute to exercise-induced benefits for the heart. Lastly, we will explore the emerging therapeutic strategies that utilize exercise-mediated RNA epigenetic regulation in the treatment of heart diseases, while also addressing the challenges faced in this field.


Assuntos
Epigênese Genética , Exercício Físico , Humanos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Cardiopatias/genética , Cardiopatias/terapia , Cardiopatias/metabolismo , RNA/genética , RNA/metabolismo , Miocárdio/metabolismo
9.
Genes Dis ; 11(5): 101045, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38988321

RESUMO

RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.

10.
Research (Wash D C) ; 7: 0327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410280

RESUMO

Exercise can stimulate physiological cardiac growth and provide cardioprotection effect in ischemia/reperfusion (I/R) injury. MiR-210 is regulated in the adaptation process induced by exercise; however, its impact on exercise-induced physiological cardiac growth and its contribution to exercise-driven cardioprotection remain unclear. We investigated the role and mechanism of miR-210 in exercise-induced physiological cardiac growth and explored whether miR-210 contributes to exercise-induced protection in alleviating I/R injury. Here, we first observed that regular swimming exercise can markedly increase miR-210 levels in the heart and blood samples of rats and mice. Circulating miR-210 levels were also elevated after a programmed cardiac rehabilitation in patients that were diagnosed of coronary heart diseases. In 8-week swimming model in wild-type (WT) and miR-210 knockout (KO) rats, we demonstrated that miR-210 was not integral for exercise-induced cardiac hypertrophy but it did influence cardiomyocyte proliferative activity. In neonatal rat cardiomyocytes, miR-210 promoted cell proliferation and suppressed apoptosis while not altering cell size. Additionally, miR-210 promoted cardiomyocyte proliferation and survival in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and AC16 cell line, indicating its functional roles in human cardiomyocytes. We further identified miR-210 target genes, cyclin-dependent kinase 10 (CDK10) and ephrin-A3 (EFNA3), that regulate cardiomyocyte proliferation and apoptosis. Finally, miR-210 KO and WT rats were subjected to swimming exercise followed by I/R injury. We demonstrated that miR-210 crucially contributed to exercise-driven cardioprotection against I/R injury. In summary, this study elucidates the role of miR-210, an exercise-responsive miRNA, in promoting the proliferative activity of cardiomyocytes during physiological cardiac growth. Furthermore, miR-210 plays an essential role in mediating the protective effects of exercise against cardiac I/R injury. Our findings suggest exercise as a potent nonpharmaceutical intervention for inducing miR-210, which can alleviate I/R injury and promote cardioprotection.

11.
JACC Basic Transl Sci ; 9(4): 535-552, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38680954

RESUMO

Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa