Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.107
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175672

RESUMO

Although previous studies have identified human-specific accelerated regions as playing a key role in the recent evolution of the human brain, the characteristics and cellular functions of rapidly evolving conserved elements (RECEs) in ancestral primate lineages remain largely unexplored. Here, based on large-scale primate genome assemblies, we identify 888 RECEs that have been highly conserved in primates that exhibit significantly accelerated substitution rates in the ancestor of the Simiiformes. This primate lineage exhibits remarkable morphological innovations, including an expanded brain mass. Integrative multiomic analyses reveal that RECEs harbor sequences with potential cis-regulatory functions that are activated in the adult human brain. Importantly, genes linked to RECEs exhibit pronounced expression trajectories in the adult brain relative to the fetal stage. Furthermore, we observed an increase in the chromatin accessibility of RECEs in oligodendrocytes from individuals with Alzheimer's disease (AD) compared to that of a control group, indicating that these RECEs may contribute to brain aging and AD. Our findings serve to expand our knowledge of the genetic underpinnings of brain function during primate evolution.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/genética , Evolução Molecular , Primatas/genética , Encéfalo
2.
Nano Lett ; 24(22): 6696-6705, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38796774

RESUMO

Ultra-high-field (UHF) magnetic resonance imaging (MRI) stands as a pivotal cornerstone in biomedical imaging, yet the challenge of false imaging persists, constraining its full potential. Despite the development of dual-mode contrast agents improving conventional MRI, their effectiveness in UHF remains suboptimal due to the high magnetic moment, resulting in diminished T1 relaxivity and excessively enhanced T2 relaxivity. Herein, we report a DNA-mediated magnetic-dimer assembly (DMA) of iron oxide nanoparticles that harnesses UHF-tailored nanomagnetism for fault-free UHF-MRI. DMA exhibits a dually enhanced longitudinal relaxivity of 4.42 mM-1·s-1 and transverse relaxivity of 26.23 mM-1·s-1 at 9 T, demonstrating a typical T1-T2 dual-mode UHF-MRI contrast agent. Importantly, DMA leverages T1-T2 dual-modality image fusion to achieve artifact-free breast cancer visualization, effectively filtering interference from hundred-micrometer-level false-positive signals with unprecedented precision. The UHF-tailored T1-T2 dual-mode DMA contrast agents hold promise for elevating the accuracy of MR imaging in disease diagnosis.


Assuntos
Meios de Contraste , DNA , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Humanos , DNA/química , Camundongos , Nanopartículas Magnéticas de Óxido de Ferro/química , Feminino , Animais , Neoplasias da Mama/diagnóstico por imagem , Nanopartículas de Magnetita/química , Linhagem Celular Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-39246141

RESUMO

Human tissue-resident memory T (TRM) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of TRM cells in the lung tissues of idiopathic pulmonary fibrosis patient. However, the functional consequences of TRM cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of TRM cells, especially the CD8+ subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8+ TRM cells in mouse lungs accordingly altered the severity of fibrosis. In addition, adoptive transfer of CD8+ T cells containing a large number of CD8+ TRM cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with CCL18 to induced CD8+ TRM cell expansion and exacerbated fibrosis, while blocking CCR8 prevented CD8+ TRM recruitment and inhibited pulmonary fibrosis. In conclusion, CD8+ TRM cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8+ TRM cells may be a potential therapeutic approach.

4.
J Am Chem Soc ; 146(11): 7400-7407, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456799

RESUMO

Peptidoglycan (PG), an essential exoskeletal polymer in bacteria, is a well-known antibiotic target. PG polymerization requires the action of bacterial transglycosylases (TGases), which couple the incoming glycosyl acceptor to the donor. Interfering with the TGase activity can interrupt the PG assembly. Existing TGase inhibitors like moenomycin and Lipid II analogues always occupy the TGase active sites; other strategies to interfere with proper PG elongation have not been widely exploited. Inspired by the natural 1,6-anhydro-MurNAc termini that mark the ends of PG strands in bacteria, we hypothesized that the incorporation of an anhydromuramyl-containing glycosyl acceptor by TGase into the growing PG may effectively inhibit PG elongation. To explore this possibility, we synthesized 4-O-(N-acetyl-ß-d-glucosaminyl)-1,6-anhydro-N-acetyl-ß-d-muramyl-l-Ala-γ-d-Glu-l-Lys-d-Ala-d-Ala, 1, within 15 steps, and demonstrated that this anhydromuropeptide and its analogue lacking the peptide, 1-deAA, were both utilized by bacterial TGase as noncanonical anhydro glycosyl acceptors in vitro. The incorporation of an anhydromuramyl moiety into PG strands by TGases afforded efficient termination of glycan chain extension. Moreover, the preliminary in vitro studies of 1-deAA against Staphylococcus aureus showed that 1-deAA served as a reasonable antimicrobial adjunct of vancomycin. These insights imply the potential application of such anhydromuropeptides as novel classes of PG-terminating inhibitors, pointing toward novel strategies in antibacterial agent development.


Assuntos
Antibacterianos , Peptidoglicano , Peptidoglicano/química , Antibacterianos/farmacologia , Bactérias/metabolismo , Glicosiltransferases/metabolismo
5.
J Am Chem Soc ; 146(17): 11811-11822, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635880

RESUMO

The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf)3 catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with O-, C-, N-, S-, and P-nucleophiles to generate structurally diverse steroid derivatives. DFT calculations were performed to shed light on the mechanistic details of the regioselectivity, underlying an acceptor-dependent steroidation mode. This approach can be readily extended to the etherification of sugar alcohols to enable the achievement of a diversity-oriented, pipeline-like synthesis of pseudo-steroidal glycosides in good to excellent yields with complete stereo- and regiospecific control for anti-inflammatory agent discovery. Immunological studies have demonstrated that a meticulously designed cholesteryl disaccharide can significantly suppress interleukin-6 secretion in macrophages, exhibiting up to 99% inhibition rates compared to the negative control. These findings affirm the potential of pseudo-steroidal glycosides as a prospective category of lead agents for the development of novel anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Glicosídeos , Esteroides , Glicosídeos/química , Glicosídeos/síntese química , Glicosídeos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Esteroides/química , Esteroides/farmacologia , Esteroides/síntese química , Camundongos , Animais , Humanos , Teoria da Densidade Funcional , Estrutura Molecular , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Macrófagos/efeitos dos fármacos
6.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494289

RESUMO

Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease.


Assuntos
Encéfalo , Primatas , Camundongos , Humanos , Animais , Primatas/genética , Encéfalo/metabolismo , Evolução Molecular
7.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37134013

RESUMO

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Assuntos
Infecções por HIV , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Humanos , Macaca nemestrina , HIV-1/genética , Genômica , Vírus da Imunodeficiência Símia/genética
8.
Anal Chem ; 96(5): 2264-2272, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266388

RESUMO

Lipid metabolism diseases have become a tremendous risk worldwide, along with the development of productivity and particular attention to public health. It has been an urgent necessity to exploit reliable imaging strategies for lipids and thus to monitor fatty liver diseases. Herein, by converting the NIR-I signal to the NIR-II signal with IR1061 for the monitoring of lipid, the in vivo imaging of fatty liver disease was promoted on the contrast and visual effect. The main advantages of the imaging promotion in this work included a long emission wavelength, rapid response, and high signal-background-ratio (SBR) value. After promoting the NIR-I signal to NIR-II signal, IR1061 achieved higher SBR value and exhibited a dose-dependent fluorescence intensity at 1100 nm along with the increase of the EtOH proportion as well as steady and selective optical responses toward liposomes. IR1061 was further applied in the in vivo imaging of lipid in fatty liver diseases. In spite of the differences in body weight gain and TC level between healthy mice and fatty liver diseases two models, IR1061 achieved high-resolution imaging in the liver region to monitor the fatty liver disease status. This work might be informatic for the clinical diagnosis and therapeutical treatments of fatty liver diseases.


Assuntos
Boratos , Metabolismo dos Lipídeos , Hepatopatias , Piranos , Animais , Camundongos , Imagem Óptica/métodos , Corantes Fluorescentes , Lipídeos
9.
Biochem Biophys Res Commun ; 733: 150592, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39213705

RESUMO

Damage to oligodendrocytes (OLs) and myelin sheaths (demyelination) has been shown to be associated with numerous neurological and psychiatric disorders. Remyelination is a rare and reliable regenerative response that occurs in the central nervous system (CNS). It is generally believed that OL progenitor cells (OPCs) are the cell source to generate new OLs to remyelinate the demyelinated axons. However, several recent studies have argued that pre-existing mature OLs that survive within the demyelinated area are responsible for remyelination. Here, by conditional knock-out (KO) of a transcription factor gene that is essential for OPC differentiation, namely myelin regulatory factor (Myrf), to block the production of adult new OLs and examined its effect on remyelination after cuprizone (CPZ)-induced demyelination. We found that OPCs specific Myrf cKO mice show dramatic impairment in remyelination after 4 weeks of recovery from 5 weeks of CPZ diet and they leave over significant behavioral deficits such as anxiety-like behavior, decreased motor skills, and impaired memory compared to control mice that have recovered for the same time. Our data support the idea that OPCs are the major cell sources for myelin regeneration, suggesting that targeting the activation of OPCs and promoting their differentiation to boost new OLs production is critical for therapeutic intervention for demyelinating diseases such as multiple sclerosis (MS).

10.
Eur Respir J ; 63(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359962

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic substantially impacted different age groups, with children and young people not exempted. Many have experienced enduring health consequences. Presently, there is no consensus on the health outcomes to assess in children and young people with post-COVID-19 condition. Furthermore, it is unclear which measurement instruments are appropriate for use in research and clinical management of children and young people with post-COVID-19. To address these unmet needs, we conducted a consensus study, aiming to develop a core outcome set (COS) and an associated core outcome measurement set (COMS) for evaluating post-COVID-19 condition in children and young people. Our methodology comprised of two phases. In phase 1 (to create a COS), we performed an extensive literature review and categorisation of outcomes, and prioritised those outcomes in a two-round online modified Delphi process followed by a consensus meeting. In phase 2 (to create the COMS), we performed another modified Delphi consensus process to evaluate measurement instruments for previously defined core outcomes from phase 1, followed by an online consensus workshop to finalise recommendations regarding the most appropriate instruments for each core outcome. In phase 1, 214 participants from 37 countries participated, with 154 (72%) contributing to both Delphi rounds. The subsequent online consensus meeting resulted in a final COS which encompassed seven critical outcomes: fatigue; post-exertion symptoms; work/occupational and study changes; as well as functional changes, symptoms, and conditions relating to cardiovascular, neuro-cognitive, gastrointestinal and physical outcomes. In phase 2, 11 international experts were involved in a modified Delphi process, selecting measurement instruments for a subsequent online consensus workshop where 30 voting participants discussed and independently scored the selected instruments. As a result of this consensus process, four instruments met a priori consensus criteria for inclusion: PedsQL multidimensional fatigue scale for "fatigue"; PedsQL gastrointestinal symptom scales for "gastrointestinal"; PedsQL cognitive functioning scale for "neurocognitive" and EQ-5D for "physical functioning". Despite proposing outcome measurement instruments for the remaining three core outcomes ("cardiovascular", "post-exertional malaise", "work/occupational and study changes"), a consensus was not achieved. Our international, consensus-based initiative presents a robust framework for evaluating post-COVID-19 condition in children and young people in research and clinical practice via a rigorously defined COS and associated COMS. It will aid in the uniform measurement and reporting of relevant health outcomes worldwide.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Adolescente , Criança , Humanos , Técnica Delphi , Avaliação de Resultados em Cuidados de Saúde , Projetos de Pesquisa , Resultado do Tratamento
11.
J Transl Med ; 22(1): 507, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802851

RESUMO

BACKGROUND: Gastric cancer (GC) ranks fifth in global cancer incidence and third in mortality rate among all cancer types. Circular RNAs (circRNAs) have been extensively demonstrated to regulate multiple malignant biological behaviors in GC. Emerging evidence suggests that several circRNAs derived from FNDC3B play pivotal roles in cancer. However, the role of circFNDC3B in GC remains elusive. METHODS: We initially screened circFNDC3B with translation potential via bioinformatics algorithm prediction. Subsequently, Sanger sequencing, qRT-PCR, RNase R, RNA-FISH and nuclear-cytoplasmic fractionation assays were explored to assess the identification and localization of circ0003692, a circRNA derived from FNDC3B. qRT-PCR and ISH were performed to quantify expression of circ0003692 in human GC tissues and adjacent normal tissues. The protein-encoding ability of circ0003692 was investigated through dual-luciferase reporter assay and LC/MS. The biological behavior of circ0003692 in GC was confirmed via in vivo and in vitro experiments. Additionally, Co-IP and rescue experiments were performed to elucidate the interaction between the encoded protein and c-Myc. RESULTS: We found that circ0003692 was significantly downregulated in GC tissues. Circ0003692 had the potential to encode a novel protein FNDC3B-267aa, which was downregulated in GC cells. We verified that FNDC3B-267aa, rather than circ0003692, inhibited GC migration in vitro and in vivo. Mechanistically, FNDC3B-267aa directly interacted with c-Myc and promoted proteasomal degradation of c-Myc, resulting in the downregulation of c-Myc-Snail/Slug axis. CONCLUSIONS: Our study revealed that the novel protein FNDC3B-267aa encoded by circ0003692 suppressed GC metastasis through binding to c-Myc and enhancing proteasome-mediated degradation of c-Myc. The study offers the potential applications of circ0003692 or FNDC3B-267aa as therapeutic targets for GC.


Assuntos
Fibronectinas , Metástase Neoplásica , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-myc , RNA Circular , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Proteólise , Camundongos Nus , Sequência de Bases , Movimento Celular/genética , Feminino , Camundongos
12.
New Phytol ; 242(3): 1257-1274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481385

RESUMO

Plant pathogenic fungi elaborate numerous detoxification strategies to suppress host reactive oxygen species (ROS), but their coordination is not well-understood. Here, we show that Sirt5-mediated protein desuccinylation in Magnaporthe oryzae is central to host ROS detoxification. SIRT5 encodes a desuccinylase important for virulence via adaptation to host oxidative stress. Quantitative proteomics analysis identified a large number of succinylated proteins targeted by Sirt5, most of which were mitochondrial proteins involved in oxidative phosphorylation, TCA cycle, and fatty acid oxidation. Deletion of SIRT5 resulted in hypersuccinylation of detoxification-related enzymes, and significant reduction in NADPH : NADP+ and GSH : GSSG ratios, disrupting redox balance and impeding invasive growth. Sirt5 desuccinylated thioredoxin Trx2 and glutathione peroxidase Hyr1 to activate their enzyme activity, likely by affecting proper folding. Altogether, this work demonstrates the importance of Sirt5-mediated desuccinylation in controlling fungal process required for detoxifying host ROS during M. oryzae infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Espécies Reativas de Oxigênio/metabolismo , Lisina/metabolismo , Estresse Oxidativo , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia
13.
J Med Virol ; 96(8): e29873, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39165041

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants raises concerns regarding the effectiveness of immunity acquired from previous Omicron subvariants breakthrough infections (BTIs) or reinfections (RIs) against the current circulating Omicron subvariants. In this study, we prospectively investigate the dynamic changes of virus-specific antibody and T cell responses among 77 adolescents following Omicron BA.2.3 BTI with or without subsequent Omicron BA.5 RI. Notably, the neutralizing antibodies (NAbs) titers against various detected SARS-CoV-2 variants, especially the emerging Omicron CH.1.1, XBB.1.5, XBB.1.16, EG.5.1, and JN.1 subvariants, exhibited a significant decrease along the time. A lower level of IgG and NAbs titers post-BTI was found to be closely associated with subsequent RI. Elevated NAbs levels and shortened antigenic distances were observed following Omicron BA.5 RI. Robust T cell responses against both Omicron BA.2- and CH.1.1-spike peptides were observed at each point visited. The exposure to Omicron BA.5 promoted phenotypic differentiation of virus-specific memory T cells, even among the non-seroconversion adolescents. Therefore, updated vaccines are needed to provide effective protection against newly emerging SARS-CoV-2 variants among adolescents.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Células T de Memória , Reinfecção , SARS-CoV-2 , Humanos , Adolescente , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Masculino , Reinfecção/imunologia , Reinfecção/virologia , Feminino , Células T de Memória/imunologia , Estudos Prospectivos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Formação de Anticorpos , Glicoproteína da Espícula de Coronavírus/imunologia , Memória Imunológica , Criança , Linfócitos T/imunologia
14.
J Med Virol ; 96(5): e29640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699969

RESUMO

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Masculino , Feminino , Estudos Longitudinais , China/epidemiologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Anticorpos Neutralizantes , Cinética , Anticorpos Antivirais/sangue , Reinfecção/epidemiologia
15.
Plant Cell Environ ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946254

RESUMO

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

16.
J Exp Bot ; 75(7): 1903-1918, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37856192

RESUMO

The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Ceras/metabolismo
17.
Phys Rev Lett ; 132(21): 210202, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856248

RESUMO

Einstein-Podolsky-Rosen (EPR) steering, a distinctive quantum correlation, reveals a unique and inherent asymmetry. This research delves into the multifaceted asymmetry of EPR steering within high-dimensional quantum systems, exploring both theoretical frameworks and experimental validations. We introduce the concept of genuine high-dimensional one-way steering, wherein a high Schmidt number of bipartite quantum states is demonstrable in one steering direction but not reciprocally. Additionally, we explore two criteria to certify the lower and upper bounds of the Schmidt number within a one-sided device-independent context. These criteria serve as tools for identifying potential asymmetric dimensionality of EPR steering in both directions. By preparing two-qutrit mixed states with high fidelity, we experimentally observe asymmetric structures of EPR steering in the C^{3}⊗C^{3} Hilbert space. Our Letter offers new perspectives to understand the asymmetric EPR steering beyond qubits and has potential applications in asymmetric high-dimensional quantum information tasks.

18.
Exp Eye Res ; 238: 109739, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042515

RESUMO

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Assuntos
Infecções Bacterianas , Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Ratos , Humanos , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Neovascularização da Córnea/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Neovascularização Patológica/metabolismo , Lesões da Córnea/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/patologia , Modelos Animais de Doenças , Álcalis/toxicidade
19.
Mol Psychiatry ; 28(7): 3092-3103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37117459

RESUMO

Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs). We performed a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies to examine the neurometabolite levels in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound) Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is a confounding factor for certain neurometabolite levels in patients with ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Ácido Glutâmico , Ácido Aspártico , Colina , Ácido gama-Aminobutírico
20.
Ann Hematol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078437

RESUMO

Neutrophil extracellular traps (NETs) represent a response mechanism in which activated neutrophils release DNA-based webs, adorned with histones and neutrophil proteases, to capture and eliminate invasive microorganisms. However, when these neutrophils become excessively activated, much more proteases associated with NETs are liberated into surrounding tissues or bloodstreams, thereby altering the cellular milieu and causing tissue damage. Recent research has revealed that NETs may play significant roles in the emergence and progression of various diseases, spanning from infections, inflammation to autoimmune disorders and cancers. In this review, we delve deeply into the intricate and complex mechanisms that underlie the formation of NETs and their profound interplay with various clinical pathologies. We aim to describe the application perspectives of NETs related proteins in specific disease diagnosis and treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa