RESUMO
BACKGROUND: Ethylene promotes fruit ripening whereas 1-methylcyclopropene (1-MCP), a non-toxic antagonist of ethylene, delays fruit ripening via the inhibition of ethylene receptor. However, unsuitable 1-MCP treatment can cause fruit ripening disorders. RESULTS: In this study, we show that short-term 1-MCP treatment (400 nLâ¢L- 1, 2 h) significantly delays papaya fruit ripening with normal ripening characteristics. However, long-term 1-MCP treatment (400 nLâ¢L- 1, 16 h) causes a "rubbery" texture of fruit. The comparative transcriptome analysis showed that a total of 5529 genes were differently expressed during fruit ripening compared to freshly harvested fruits. Comprehensive functional enrichment analysis showed that the metabolic pathways of carbon metabolism, plant hormone signal transduction, biosynthesis of amino acids, and starch and sucrose metabolism are involved in fruit ripening. 1-MCP treatment significantly affected fruit transcript levels. A total of 3595 and 5998 differently expressed genes (DEGs) were identified between short-term 1-MCP, long-term 1-MCP treatment and the control, respectively. DEGs are mostly enriched in the similar pathway involved in fruit ripening. A large number of DEGs were also identified between long-term and short-term 1-MCP treatment, with most of the DEGs being enriched in carbon metabolism, starch and sucrose metabolism, plant hormone signal transduction, and biosynthesis of amino acids. The 1-MCP treatments accelerated the lignin accumulation and delayed cellulose degradation during fruit ripening. Considering the rubbery phenotype, we inferred that the cell wall metabolism and hormone signal pathways are closely related to papaya fruit ripening disorder. The RNA-Seq output was confirmed using RT-qPCR by 28 selected genes that were involved in cell wall metabolism and hormone signal pathways. CONCLUSIONS: These results showed that long-term 1-MCP treatment severely inhibited ethylene signaling and the cell wall metabolism pathways, which may result in the failure of cell wall degradation and fruit softening. Our results reveal multiple ripening-associated events during papaya fruit ripening and provide a foundation for understanding the molecular mechanisms underlying 1-MCP treatment on fruit ripening and the regulatory networks.
Assuntos
Carica/genética , Ciclopropanos/farmacologia , Etilenos/antagonistas & inibidores , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Transcriptoma , Carica/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genéticaRESUMO
In this study, tea polyphenol oxidase (PPO) was purified via three-phase partitioning (TPP) using a deep eutectic solvent (DES) instead of t-butanol. First, the properties of 13 types of synthesized DESs were characterized, and DES-7 (thymol/dodecanoic acid) was selected as the best alternative solvent. The process parameters were optimized using response surface methodology. The experimental results revealed that when the (NH4)2SO4 concentration, DES to crude extract ratio, extraction time, and pH were 41%, 0.5:1, 75 min, and 5.6, respectively, the recovery and purification fold of tea PPO were 78.44% and 8.26, respectively. SDS-PAGE and native-PAGE were used to analyze the PPO before and after purification of the TTP system, and the molecular weight and purification effect of PPO were detected. Moreover, the DES could be recovered and recycled. The results indicate an environmentally friendly and stable DES, and provide a reference for the large-scale application of TPP to extract PPO.
RESUMO
Targeting the functional groups present in analytes by nanozyme-catalyzed systems is a promising strategy to construct sensitive and selective platforms for the sensing of specific analytes. Herein, various groups (-COOH, -CHO, -OH, and -NH2) on benzene were introduced in an Fe-based nanozyme system with MoS2-MIL-101(Fe) as the model peroxidase nanozyme, H2O2 as the oxidizing agent, and TMB as the chromogenic substrate, and the effects of these groups at both a low concentration and high concentration were further investigated. It was found that the hydroxyl group-based substance catechol showed an "on" effect at a low concentration to increase the catalytic rate and enhance the absorbance signal, whereas an "off" effect at a high concentration with a decreased absorbance signal. Based on these results, the "on" mode and "off" mode for the biological molecule dopamine, a type of catechol derivative, were proposed. In the control system, MoS2-MIL-101(Fe) catalyzed the decomposition of H2O2 to produce ROS, which further oxidized TMB. In the "on" mode, the hydroxyl groups of dopamine could combine with the Fe(iii) site of the nanozyme to lower its oxidation state, resulting in higher catalytic activity. In the "off" mode, the excess dopamine could consume ROS, which inhibited the catalytic process. Under the optimal conditions, by balancing the "on" and "off" modes, the "on" mode for the detection of dopamine was found to have better sensitivity and selectivity. The LOD was as low as 0.5 nM. This detection platform was successfully applied for the detection of dopamine in human serum with satisfactory recovery. Our results can pave the way for the design of nanozyme sensing systems with sensitivity and selectivity.
RESUMO
The plant resistance elicitor Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) can enhance disease resistance of harvested fruit. Nonetheless, it is still unknown whether BTH plays a role in regulating fruit senescence. In this study, exogenous BTH treatment efficiently delayed the senescence of postharvest pitaya fruit with lower lipid peroxidation level. Furthermore, BTH-treated fruit exhibited lower hydrogen peroxide (H2O2) content, higher contents of reduced ascorbic acid (AsA) and reduced glutathione (GSH) levels and higher ratios of reduced to oxidized glutathione (GSH/GSSG) and ascorbic acid (AsA/DHA), as well as higher activities of ROS scavenging enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and glutathione reductase (GR) in comparison with control fruit. Moreover, BTH treatment enhanced the activities of phenylpropanoid pathway-related enzymes, including cinnamate-4-hydroxylase (C4H), phenylalanine ammonia-lyase (PAL) and 4-coumarate/coenzyme A ligase (4CL) and the levels of phenolics, flavonoids and lignin. In addition, BTH treatment upregulated the expression of HuSOD1/3/4, HuCAT2, HuAPX1/2 and HuPOD1/2/4 genes. These results suggested that application of BTH delayed the senescence of harvested pitaya fruit in relation to enhanced antioxidant system and phenylpropanoid pathway.
RESUMO
Brassinosteroids act by delaying fruit ripening. The effects of different concentrations of 2,4-epibrassinolide (eBL) treatments on carambola fruit ripening were investigated. The results show that treatment of 2.8 mg L-1, eBL with 10 min effectively delays ripening and maintains the quality of carambola fruit. This is achieved by retarding color changes and firmness losses while maintaining high level of soluble protein content and vitamin C, and low organic acid content. eBL-delayed senescence may be due to the inhibition of respiration rate and enhanced antioxidant system. It is noteworthy that eBL treatment markedly reduces the content of fructose-6-phosphate (6-P-F) and enhances the activity of cytochrome oxidase (CCO), and the total activity of glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphate gluconate dehydrogenase (6-PGDH). eBL treatment induces the IAA and GA contents but reduces that of ABA. In general, senescence retardation and quality improvement by eBL treatment may be due to the enhanced antioxidant capacity and altered respiratory pathways.
RESUMO
Ethylene plays a pivotal role in climacteric fruit ripening; whereas 1-MCP, a non-toxic antagonist of ethylene, prevents ethylene-dependent responses and fruit ripening. In this study, a short-term treatment (1 h) with 400 nL L-1 1-MCP delayed the ripening of harvested papaya. However, long-term application of 1-MCP (400 nL L-1, 16 h) resulted in abnormal fruit ripening, with the fruits exhibiting normal yellowing without softening, significantly higher cellulose and lignin contents, and intact cell walls (CW). Furthermore, we found that long-term treatment with 1-MCP significantly inhibited the expression of CpEBF1, an EIN3-binding F-box-1 gene. A protein interaction analysis using yeast two-hybrid, BiFC and GST pull-down assays showed that CpEBF1 interacts with the CpMADS1/3 and CpEIL1 proteins. The interaction of CpEBF1 with CpMADS1/3 further activated the activities of CW-degradation gene promoters. Subcellular localization showed that these proteins were localized in the nucleus. Additionally, the expression levels of CpMADS1/3, CpEIL1, and several CW-degradation-related genes were significantly downregulated by long-term 1-MCP treatment. Therefore, we propose that the inhibited expression of CpEBF1 and CpMADS1/3 resulted in the repressed activation of CW-degradation-related genes via their interaction, thereby resulting in fruit softening disorders.