Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(1): e0195122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36629425

RESUMO

The anaerobic bioremediation of polychlorinated biphenyls (PCBs) is largely impeded by difficulties in massively enriching PCB dechlorinators in short periods of time. Tetrachloroethene (PCE) is often utilized as an alternative electron acceptor to preenrich PCB-dechlorinating bacteria. In this study, resuscitation promoting factor (Rpf) was used as an additive to enhance the enrichment of the microbial communities involved in PCE/PCBs dechlorination. The results indicated that Rpf accelerates PCE dechlorination 3.8 to 5.4 times faster than control cultures. In Aroclor 1260-fed cultures, the amendment of Rpf enables significantly more rapid and extensive dechlorination of PCBs. The residual high-chlorinated PCB congeners (≥5 Cl atoms) accounted for 36.7% and 59.8% in the Rpf-amended cultures and in the corresponding controls, respectively. This improvement was mainly attributed to the enhanced activity of the removal of meta-chlorines (47.7 mol % versus 14.7 mol %), which did not appear to affect dechlorination pathways. The dechlorinators, including Dehalococcoides in Chloroflexi and Desulfitobacterium in Firmicutes, were greatly enriched via Rpf amendment. The abundance of nondechlorinating populations, including Methanosarcina, Desulfovibrio, and Bacteroides, was also greatly enhanced via Rpf amendment. These results suggest that Rpf serves as an effective additive for the rapid enrichment of active dechlorinating cultures so as to provide a new approach by which to massively cultivate bioinoculants for accelerated in situ anaerobic bioremediation. IMPORTANCE The resuscitation promoting factor (Rpf) of Micrococcus luteus has been reported to resuscitate and stimulate the growth of functional microorganisms that are involved in the aerobic degradation of polychlorinated biphenyls (PCBs). However, few studies have been conducted to investigate the role of Rpf on anaerobic microbial populations. In this study, the enhancement of Rpf on the anaerobic microbial dechlorination of PCE/PCBs was discovered. Additionally, the Rpf-responsive populations underlying the enhanced dechlorination were uncovered. This report reveals the rapid enrichment of active dechlorinating cultures via Rpf amendment, and this sheds light on massively enriching PCB dechlorinators in short periods of time. The enhanced in situ anaerobic bioremediation of PCBs could be expected by supplementing Rpf.


Assuntos
Chloroflexi , Bifenilos Policlorados , Tetracloroetileno , Bifenilos Policlorados/metabolismo , Tetracloroetileno/metabolismo , Bactérias/metabolismo , Chloroflexi/metabolismo , Biodegradação Ambiental , Cloro/metabolismo , Sedimentos Geológicos/microbiologia
2.
J Environ Manage ; 304: 114290, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34915384

RESUMO

The feasibility of pyrite as catalysts in the persulfate oxidation and electron donor for subsequent bacterial denitrification was investigated. The results demonstrated that pyrite-activated persulfate oxidation could efficiently degrade the organic matter in the effluent of biological landfill leachate treatment system, and COD removal efficiency of about 45% was achieved at the optimum parameters: pH = 6, pyrite dosage = 9.28 mM, dimensionless oxidant dose = 0.25. Among the dissolved organic matter, hydrophobic dissolved organic carbon (HO DOC), humic acids and building blocks were the main components. After the pyrite-activated persulfate oxidation, humic acids and HO DOC were primarily degraded, followed by building blocks, while low molecular weight neutrals were probably the degradation products. In the subsequent biological process, nitrate reduction was satisfactorily accomplished with autotrophic denitrification as the main pathway. When the influent nitrate concentration was about 180 mg L-1, the effluent nitrate concentration was stable below 20 mg L-1 with the nitrogen removal rate of about 108 mg L-1 d-1. To sum up, the pyrite-activated persulfate oxidation and the following biological denitrification was a feasible application in the effluent of biological landfill leachate treatment system.


Assuntos
Poluentes Químicos da Água , Reatores Biológicos , Desnitrificação , Matéria Orgânica Dissolvida , Ferro , Nitrogênio , Oxirredução , Sulfetos , Poluentes Químicos da Água/análise
3.
Appl Environ Microbiol ; 87(18): e0111021, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34232723

RESUMO

Microbial degradation plays an important role in environmental remediation. However, most microorganisms' pollutant-degrading capabilities are weakened due to their entry into a viable but nonculturable (VBNC) state. Although there is some evidence for the VBNC state of pollutant-degrading bacteria, limited studies have been conducted to investigate the VBNC state of pollutant degraders among fungi. In this work, the morphological, physiological, and molecular changes of phenol-degrading yeast strain LN1 exposed to high phenol concentrations were investigated. The results confirmed that Candida sp. strain LN1, which possessed a highly efficient capability of degrading 1,000 mg/liter of phenol as well as a high potential for aromatic compound degradation, entered into the VBNC state after 14 h of incubation with 6,000 mg/liter phenol. Resuscitation of VBNC cells can restore their phenol degradation performance. Compared to normal cells, significant dwarfing, surface damage, and physiological changes of VBNC cells were observed. Molecular analysis indicated that downregulated genes were related to the oxidative stress response, xenobiotic degradation, and carbohydrate and energy metabolism, whereas upregulated genes were related to RNA polymerase, amino acid metabolism, and DNA replication and repair. This report revealed that a pollutant-degrading yeast strain entered into the VBNC state under high concentrations of contaminants, providing new insights into its survival status and bioremediation potential under stress. IMPORTANCE The viable but nonculturable (VBNC) state is known to affect the culturability and activity of microorganisms. However, limited studies have been conducted to investigate the VBNC state of other pollutant degraders, such as fungi. In this study, the VBNC state of a phenol-degrading yeast strain was discovered. In addition, comprehensive analyses of the morphological, physiological, and molecular changes of VBNC cells were performed. This study provides new insight into the VBNC state of pollutant degraders and how they restored the activities that were inhibited under stressful conditions. Enhanced bioremediation performance of indigenous microorganisms could be expected by preventing and controlling the formation of the VBNC state.


Assuntos
Candida/efeitos dos fármacos , Poluentes Ambientais/administração & dosagem , Fenol/administração & dosagem , Biodegradação Ambiental/efeitos dos fármacos , Candida/genética , Candida/crescimento & desenvolvimento , Candida/metabolismo , Relação Dose-Resposta a Droga , Genoma Fúngico , Viabilidade Microbiana/efeitos dos fármacos , Estresse Fisiológico , Sequenciamento Completo do Genoma
4.
J Fluoresc ; 30(5): 1271-1279, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32767189

RESUMO

Chemical oxidation is a key technique used in dye wastewater treatment via the formation of hydroxyl radicals. To obtain optimal treatment effects, it is critical to understand the interaction of the molecular structure of the dye with the hydroxyl radical. We evaluated fluorescence excitation-emission matrix spectroscopy to study the decay of an azo-dye (Procion Red MX-5B) by a hydroxyl radical generated from catalytic Fe (III) on H2O2. Results showed that fluorescence signal reliably indicated the variations of the chemical groups and components during degradation, and the degradation could be divided into three stages: initial degradation (decolorisation), rapid intermediate degradation, and final degradation. Under control of uncorrected matrix correlation, the fluorescence fractions could be fitted successfully by parallel factor model (PARAFAC) model: two fluorescence components in initial degradation including mono substituted benzene and mono substituted naphthalene, three components as multi substituted benzene in rapid degradation, and no components could be resolved in the final degradation. The results from the study demonstrate the utility fluorescence characterization of dye degradation mechanisms and enhance the understanding of the degradation mechanisms.


Assuntos
Corantes/química , Catálise , Compostos Férricos/química , Peróxido de Hidrogênio/química , Radical Hidroxila/síntese química , Radical Hidroxila/química , Estrutura Molecular , Oxirredução , Espectrometria de Fluorescência , Águas Residuárias/química
5.
Environ Sci Technol ; 50(23): 12750-12758, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27783478

RESUMO

The distribution, composition and morphological structure of subvisible particles and colloids (0.01-10 µm) in the supernatant of a lab-scale submerged anaerobic membrane bioreactor (SAnMBR), and their role in membrane fouling, was investigated. Photometric analysis showed that the supernatant and membrane foulants were dominated by particles and colloids (0.45-10 µm), which accounted for over 90% of the total organics (proteins and polysaccharides). Excitation-emission matrix (EEM) fluorescence spectra and monosaccharide analysis showed that these particles and colloids were rich in fluorescent proteins, rhamnose, ribose and arabinose, all of which could be related to cellular and extracellular substances. Fluorescence and scanning electron microscopy confirmed the presence of bacterial cells in/on the subvisible particles and colloids. The microparticles (5-10 µm) were primarily composed of Streptobacilli and/or filamentous bacteria in the form of microcolonies, while the submicrometer particles and colloids (1-5 µm and 100 kDa-1 µm) had more free/single cocci and bacilli. The ratio of live/dead cells varied in different size-fractions, and the particles (1-10 µm) contained more live cells compared with the colloids (100 kDa-1 µm). Our findings suggest that bacterial cells in/on the particles and colloids could have an important effect on fouling in SAnMBRs as they represent pioneering species attaching to membranes to form fouling layers/biofilm. Such insights reveal that previous foulant-characterization studies in MBRs tended to overestimate organic fouling, while the biofouling induced by these bacteria in/on the particles and colloids was overlooked.


Assuntos
Reatores Biológicos/microbiologia , Membranas Artificiais , Biofilmes , Incrustação Biológica , Coloides
6.
Can J Microbiol ; 62(10): 870-879, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27556282

RESUMO

Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.


Assuntos
Alcaligenaceae/isolamento & purificação , Halothiobacillus/isolamento & purificação , Consórcios Microbianos/fisiologia , Campos de Petróleo e Gás/microbiologia , Alcaligenaceae/genética , Microbiologia Ambiental , Halothiobacillus/genética , Fraturamento Hidráulico , Concentração de Íons de Hidrogênio , Tipagem Molecular , Oxirredução , RNA Ribossômico 16S/genética
7.
BMC Microbiol ; 14: 225, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25194715

RESUMO

BACKGROUND: Perchlorate contamination has been detected in both ground water and drinking water. An attractive treatment option is the use of ion-exchange to remove and concentrate perchlorate in brine. Biological treatment can subsequently remove the perchlorate from the brine. When nitrate is present, it will also be concentrated in the brine and must also be removed by biological treatment. The primary objective was to obtain an in-depth characterization of the microbial populations of two salt-tolerant cultures each of which is capable of metabolizing perchlorate. The cultures were derived from a single ancestral culture and have been maintained in the laboratory for more than 10 years. One culture was fed perchlorate only, while the other was fed both perchlorate and nitrate. RESULTS: A metagenomic characterization was performed using Illumina DNA sequencing technology, and the 16S rDNA of several pure strains isolated from the mixed cultures were sequenced. In the absence of nitrate, members of the Rhodobacteraceae constituted the prevailing taxonomic group. Second in abundance were the Rhodocyclaceae. In the nitrate fed culture, the Rhodobacteraceae are essentially absent. They are replaced by a major expansion of the Rhodocyclaceae and the emergence of the Alteromonadaceae as a significant community member. Gene sequences exhibiting significant homology to known perchlorate and nitrate reduction enzymes were found in both cultures. CONCLUSIONS: The structure of the two microbial ecosystems of interest has been established and some representative strains obtained in pure culture. The results illustrate that under favorable conditions a group of organisms can readily dominate an ecosystem and yet be effectively eliminated when their advantage is lost. Almost all known perchlorate-reducing organisms can also effectively reduce nitrate. This is certainly not the case for the Rhodobacteraceae that were found to dominate in the absence of nitrate, but effectively disappeared in its presence. This study is significant in that it reveals the existence of a novel group of organisms that play a role in the reduction of perchlorate under saline conditions. These Rhodobacteraceae especially, as well as other organisms present in these communities may be a promising source of unique salt-tolerant enzymes for perchlorate reduction.


Assuntos
Reatores Biológicos/microbiologia , Nitratos/metabolismo , Percloratos/metabolismo , Rhodobacteraceae/metabolismo , Rhodocyclaceae/metabolismo , Cloreto de Sódio/metabolismo , Sequência de Bases , Biodegradação Ambiental , Troca Iônica , Metagenoma/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodocyclaceae/genética , Sais/metabolismo
8.
Environ Sci Technol ; 47(15): 8666-73, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23789987

RESUMO

Salt-tolerant perchlorate-reducing bacteria can be used to regenerate ion-exchange brines or resins exhausted with perchlorate. A salt-tolerant perchlorate-reducing Marinobacter vinifirmus strain P4B1 was recently purified. This study determined the effects of Na(+) and Mg(2+) concentrations on the perchlorate reduction rate of P4B1. The results showed that strain P4B1 could utilize perchlorate and grow in the presence of 1.8% to 10.2% NaCl. Lower NaCl concentrations allowed faster perchlorate reduction. The addition of Mg(2+) to the culture showed significant effects on perchlorate reduction when perchlorate was the sole electron acceptor. A molar Mg(2+)/Na(+) ratio of ∼0.11 optimized perchlorate degradation and cell growth. When perchlorate and nitrate were both present, nitrate reduction did not start significantly until perchlorate was below 100 mg/L. Tests with washed cell suspensions indicated that strain P4B1 had both perchlorate and nitrate reduction enzymes. When the culture was exposed to both perchlorate and nitrate, the nitrate reduction enzyme activity was low. The maximum specific substrate utilization rate (Vm) and the half saturation coefficient (KS) for P4B1 (30 g/L NaCl) determined in this study were 0.049 ± 0.003 mg ClO4(-)/mg VSS-h and 18 ± 4 mg ClO4(-)/L, respectively.


Assuntos
Adaptação Fisiológica , Magnésio/química , Marinobacter/metabolismo , Nitratos/química , Percloratos/metabolismo , Cloreto de Sódio/metabolismo , Sódio/química , Cinética , Marinobacter/fisiologia , Oxirredução
9.
Chemosphere ; 315: 137760, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610508

RESUMO

Indigenously isolated anaerobes encoding four quorum quenching (QQ) enzymes were applied in immobilized- and bioaugmented forms for their implications on membrane foulants, microbial taxa, and biofouling control. Two identical anaerobic membrane bioreactors (AnMBRs) with different immobilizing media, i.e. silica-alginate (AnMBR-Si) and hollow fiber-alginate (AnMBR-Hf), were sequentially operated for two conventional and three QQ based phases. The synergistic addition of QQ anaerobes in free cells and the immobilized form prolonged the membrane filtration operation by 172 ± 29% and 284 ± 12% in AnMBR-Si and AnMBR-Hf, respectively. Biocake with low surface coverage was prominent during QQ application compared to conventional phases. Despite the better control of AHLs (3OC6-, C6-, 3OC8, C8, and C10-HSL) and AI-2 at various points of QQ phases, the QQ consortium could not maintain a low concentration of signals for longer period. Therefrom, quenching of targeted signal molecules instigate the dominance of microbial species bearing non-targeted quorum sensing mechanism. The QQ significantly altered the biofilm-forming community in mixed liquor, while the members with robust signal transduction systems became dominant to counteract the QQ mechanism and were the ultimate cause of biofouling. The improved methane content in biogas and increased methanogens composition during QQ phases demonstrated the synergism of exogenous and immobilized QQ as the most viable option for long-term AnMBR operation.


Assuntos
Incrustação Biológica , Percepção de Quorum , Incrustação Biológica/prevenção & controle , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Alginatos
10.
Bioresour Technol ; 377: 128935, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958683

RESUMO

This study aimed to elucidate the multiple strategies employed by anaerobes during granulation in a laboratory upflow anaerobic sludge blanket reactor, based on microbial succession and interactions. The anaerobic granulation process featured staged dominance of microbial genera, corresponding well with the environmental traits. Across the stages (selection, seeding, expansion, and maturation), chemotaxis attraction of nitrogen and/or carbon sources and flagellar motion were the primary strategy of microbial assembly. The second messengers - cyclic adenosine and guanosine monophosphates - partially regulated the agglomeration of filamentous Euryachaeota and Chloroflexi as the inner cores, while quorum sensing mediated the expansion of granules prior to maturation. Antagonism or competition governed the interactions within the phylogenetic molecular ecological network during sludge granulation, which were largely driven by the low-abundance (<1%) taxa. These new insights suggest that better engineering solutions to enhance chemotaxis attraction and species selection could achieve more efficient anaerobic granular sludge processes.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Filogenia , Bactérias Anaeróbias
11.
Sci Total Environ ; 881: 163363, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044343

RESUMO

This study aimed to evaluate the nitrogen (N) dynamics in Lijiang River, a tide gate-controlled river flowing into South China Sea, and to quantify the biochemical processes affecting nitrate fate and transport during the closed-tide gate period. The continuous on-line water monitoring indicates a chemostatic NH4+-N pattern with respect to variable discharges in the upstream section. The survey via daily grab water sampling from July to December 2020 at four equidistant locations in the lower stretch showed that a gradual increase in NO3--N and decrease in NH4+-N concentrations occurred along the river from upstream to downstream sections and with the time from September to December (the closed-tide gate period). The mean difference between nitrification and denitrification rate peaked at 0.43 mg L-1 d-1 in October in the upper section and gradually reduced to -0.26 mg L-1 d-1 in December in the middle section, indicating the increased advantage of denitrification over nitrification with time. A gradual increase in the mean NO3--N assimilatory uptake rate with time and a decrease from upstream to downstream were also observed. These results show that the closed-tide gate promoted N biotransformation in Laingian River and significant N removal was achieved through coupled nitrification-denitrification.


Assuntos
Nitrogênio , Poluentes Químicos da Água , Nitrogênio/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Nitrificação , Nitratos/análise , China , Desnitrificação
12.
Int J Biol Macromol ; 251: 126379, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37595699

RESUMO

In algae-bacteria symbiotic wastewater treatment, the excellent settling performance of algae-bacteria aggregates is critical for biomass separation and recovery. Here, the composition of extracellular polymeric substances (EPS), microbial profiles, and functional genes of algae-bacteria aggregates were investigated at different solid retention times (SRTs) (10, 20, and 40 d) during partial nitrification in photo sequencing bioreactors (PSBRs). Results showed that SRTs greatly influenced the nitrogen transformation and the formation and morphological structure of algae-bacteria aggregates. The highest nitrite accumulation, the largest particle size (~1.54 mm) and the best settling performance were observed for the algae-bacteria aggregates in the PSBR with an SRT of 10 d, where the abundant occurrence of filamentous cyanobacteria with the highest ratio of chlorophyll a/b and the lowest EPS amount with the highest protein-to-polysaccharide ratio were observed. In particular, the EPS at 10 d of SRT contained a higher amount of protein-related hydrophobic groups and a lower ratio of α-helix/(ß-sheet + random coil), indicating a looser protein structure, which might facilitate the formation and stabilization of algae-bacteria aggregates. Moreover, algal-bacterial aggregation greatly depended on the composition and evolution of filamentous cyanobacteria (unclassified _o__Oscillatoriales and Phormidium accounted for 56.29 % of the identified algae at SRT 10 d). The metagenomic analysis further revealed that functional genes related to amino acid metabolism (e.g., genes of phenylalanine, tyrosine, and tryptophan biosynthesis) were expressed at high levels within 10 d of SRT. Overall, this study demonstrates the influence of EPS structures and filamentous cyanobacteria on algae-bacteria aggregation and reveals the biological mechanisms driving photogranule structure and function.

13.
Sci Total Environ ; 877: 162911, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933736

RESUMO

Microbial community and interaction play crucial roles in ecological functions of soil including nutrient cycling carbon storage, and water maintenance etc. Numerous studies have shown that the application of fertilizers alters bacterial diversity; However, it remains unknown whether and how the continuous application of biogas slurry from anaerobic digestion affects the spatiotemporal heterogeneity of soil layers, complexity and stability of microbial networks, and functions related to C and N cycling. Here, we investigated the bacterial taxa of purple soils treated with swine biogas slurry for four different periods (0, 1, 3 and 8 years) and five different soil depths (20, 40, 60, 80 and 100 cm). The results showed that the application period of biogas slurry and soil depth were two powerful drivers of bacterial diversity and communities. Biogas slurry input resulted in marked changes in the bacterial diversity and composition at the soil depths of 0-60 cm. The relative abundances of Acidobacteriota, Myxococcot, and Nitrospirota decreased, while Actinobacteria, Chloroflexi, and Gemmatimonadota increased with repeated biogas slurry input. The decreasing complexity and stability of the bacterial network with decreasing nodes, links, robustness, and cohesions were found with increasing years of biogas slurry application, suggesting that the bacterial network of soils treated by the biogas slurry became more vulnerability compared with the control. Also, the linkages between the keystone taxa and soil properties were weakened after biogas slurry input, leading to the cooccurrence patterns being less affected by the keystones in the high level of nutrients. Metagenomic analysis confirmed that biogas slurry input increased the relative abundance of liable-C degradation and denitrification genes, which could highly impact the network properties. Overall, our study could give comprehensive understandings on the impacts of biogas slurry amendment on soils, which could be useful for maintaining sustainable agriculture and soil health with liquid fertilization.


Assuntos
Biocombustíveis , Solo , Animais , Suínos , Metagenômica , Bactérias/genética , Agricultura , Fertilizantes , Microbiologia do Solo
14.
Chemosphere ; 307(Pt 4): 136101, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35998728

RESUMO

A ceramic membrane reactor (CMR) integrated with in-situ UV/O3 was assessed for post-treatment of the effluent out of an up-flow anaerobic sludge blanket (UASB) reactor treating real textile wastewater, focusing on the transformation of dissolved organic matter (DOM). Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) revealed the transformation of heteroatomic DOM containing S, N or both to simpler DOM containing mainly C, H, and O atoms. The decreased N contents in products (N/C = 0.0249) compared to precursors (N/C = 0.0311) and the higher O/C ratios in the N-containing products suggest the removal of R-NH2 groups accompanying DOM oxidation. While, S-containing compounds in the products had lower O/C and H/C ratios, suggesting a reduced state and the transformation of R-SO3 to R-S-R. H-abstraction and OH addition were identified as the primary oxidation mechanisms, thus enhancing the dominance of highly unsaturated and phenolic DOM in the effluent (70.3%) compared to the feed (56.6%). The double bond equivalent (DBE) was also increased by 26% in the effluent compared to the feed and by 33% in products compared to precursors. These findings help understand the DOM transformation in UV/O3-assisted ceramic membrane reactors and call for comprehensive toxicity analyses of effluents from the advanced oxidation processes.


Assuntos
Esgotos , Águas Residuárias , Matéria Orgânica Dissolvida , Oxirredução , Têxteis , Águas Residuárias/química
15.
Sci Total Environ ; 811: 152349, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34914989

RESUMO

Despite a few reports of quorum quenching (QQ) in anaerobic membrane bioreactors (AnMBRs), the sensing, regulation and degradation mechanism for quorum sensing (QS) signals by indigenous QQ isolates have been barely studied. This study employed isolation and screening of indigenous QQ strains from anaerobic sludge for acyl-homoserine lactones (AHLs) degradation and membrane biofouling control. High-quality whole genome sequences of Micrococcus luteus anQ-m1, Bacillus pacificus anQ-h4, and Lysinibacillus capsici anQ-h6 were obtained, with a genome size of 2.5, 5.6, and 4.7 Mbp, respectively. Amidase-encoding amiE was the only QQ gene in anQ-m1, while anQ-h6 carries both amiE and lactonase-encoding aiiB genes. Genes responsible for QS autoinducer synthesis were not identified in anQ-m1 and anQ-h6, suggesting low potential of biofilm promotion via QS. Despite a peptidic QS system responsible for biofilm formation, anQ-h4 bears the most comprehensive QQ system, including amiE-amidase, aiiA-lactonase, CYP102A5-cytochrome oxidoreductase, and lsrK-autoinducer-2 kinase. This study elucidates QS and QQ mechanisms of potential anaerobes and provides fundamentals for designing QQ consortia to effectively control biofouling in AnMBRs.


Assuntos
Incrustação Biológica , Percepção de Quorum , Acil-Butirolactonas , Anaerobiose , Reatores Biológicos , Percepção de Quorum/genética
16.
Sci Total Environ ; 807(Pt 3): 150975, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656579

RESUMO

Partial denitrification combined with Anammox is a promising approach for simultaneous removal of ammonium and nitrate from wastewaters. In this study, the start-up, influencing factors and stable operation of partial denitrification for treating biological effluent from landfill leachate were investigated. High nitrate loads (3.85 kg N m-3 d-1) and short hydraulic retention time (0.66 h) were obtained in the partial denitrification process, yielding a suitable ratio of NO2--N/NH4+-N in the effluent for downstream Anammox process. The study also revealed the importance of carbon sources, COD/NO3--N ratio and salinity in the partial denitrification. Acetate-type carbon source, COD/NO3--N ratio of about 3.0 and salinity lower than 1% favored high-efficient partial denitrification. The endogenous carbon sources from high-rate partial denitrification sludge contributed to low COD consumption in the process. During the partial denitrification, the dominant genus of Thauera was enriched, and shifted to Pseudomonas with the increase of organic removal rates.


Assuntos
Desnitrificação , Poluentes Químicos da Água , Oxidação Anaeróbia da Amônia , Esgotos , Águas Residuárias
17.
Chemosphere ; 263: 127922, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32841875

RESUMO

Anaerobic process has been widely applied as a cost-effective method for textile wastewater treatment. However, many bacteria exhibit low metabolic activity in unfavorable conditions due to the entry into a viable but non-culturable (VBNC) state. Thus, in this study, a novel method of using resuscitation-promoting factors (Rpfs), which has been proven to resuscitate and stimulate the growth of VBNC bacteria, is explored to enhance the degradation of the anthraquinone dye reactive blue 19 (RB19) in the anaerobic process. The results show that Rpfs could efficiently prompt RB19 decolorization. Compared to the conventional anaerobic condition, RB19 decolorization efficiency was increased by more than 20% with the Rpf addition. UV-visible spectral and gas chromatograph-mass spectrometry analysis indicate that the aromatic amines structures of RB19 was cleaved. More importantly, the Rpf addition appeared to stimulate and/or enrich some dye-degrading species of the family Peptostreptococcaceae, thus leading to a higher RB19 decolorization efficiency.


Assuntos
Antraquinonas/metabolismo , Biodegradação Ambiental , Anaerobiose , Antraquinonas/química , Bactérias/metabolismo , Corantes/metabolismo , Têxteis
18.
Chemosphere ; 263: 128283, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297227

RESUMO

The activities of indigenous bacterial communities in polychlorinated biphenyls (PCBs) contaminated environments is closely related to the efficiency of bioremediation processes. Using resuscitation promoting factor (Rpf) from Micrococcus luteus is a promising method for resuscitation and stimulation of functional bacterial populations under stressful conditions. This study aims to use the Rpf to accelerate the biodegradation of Aroclor 1242, and explore putative PCB degraders which were resuscitated by Rpf addition. The Rpf-responsive bacterial populations were investigated using culture-dependent and culture-independent approaches, respectively. The results confirm that Rpf was capable of enhancing PCB degradation of enriched cultures from PCB-contaminated soils, and improving the activities of cultures with low tolerance to PCBs. High-throughput 16S rRNA analysis displays that the Rpf greatly altered the composition and abundance of bacterial populations in the phylum Proteobacteria. Identification of the resuscitated strains further suggests that the Rpf-responsive population was mostly represented by Sphingomonas and Pseudomonas, which are most likely the key PCB-degraders for enhanced biodegradation of PCBs.


Assuntos
Bifenilos Policlorados , Bactérias/genética , Biodegradação Ambiental , Bifenilos Policlorados/análise , Pseudomonas , RNA Ribossômico 16S/genética , Microbiologia do Solo
19.
Environ Technol ; 31(8-9): 1025-43, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20662390

RESUMO

Large volumes of saline (> 2% w/v NaCl) wastewaters are discharged from many industries; e.g. seafood processing, textile dyeing, oil and gas production, tanneries and drinking water treatment processes. Although anaerobic treatment would be the most cost-effective and sustainable technology for the treatment of many of these saline wastewaters, the salinity is considered to be inhibitory to anaerobic biological treatment processes. The recent applications of salt-tolerant cultures for the treatment of wastewaters from seafood processing and ion-exchange processes suggest that biological systems can be used to treat salty wastewaters. Additionally, organisms capable of anaerobic degradation of contaminants in saline solutions have been observed in marine sediments and have been characterized during the last two decades. This manuscript provides a review of the recent research on anaerobic treatment of saline wastewater and bacterial consortia capable of the anaerobic degradation of pollutants in saline solutions, documenting that the biological treatment of saline wastewaters is promising.


Assuntos
Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Cloreto de Sódio/metabolismo , Poluentes Químicos da Água/metabolismo , Resíduos Industriais
20.
Chemosphere ; 247: 125953, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069724

RESUMO

In conventional membrane bioreactor (MBR) treatment systems, Gram-negative bacterial population appears to be always outnumbered Gram-positive community. Thereby, acyl homoserine lactones (AHLs), major signaling molecules utilized by Gram-negative bacteria, have been targeted for biofouling control in quorum quenching (QQ) based studies. This study investigated the impact of AHL and autoinducer-2 (AI-2)-degrading QQ consortium on the selective accumulation of microbial communities in a QQ MBR (MBR-QQb). The results show that addition of the QQ consortium (in the form of beads) increased the filtration time of MBR-QQb by 3.5 times. The distribution of mixed liquor extracellular polymeric substances (EPS), especially the tightly bound (TB) proteinous EPS and the floc size were strongly affected by the QQ activity, and the endless 'battle' between QQ and quorum sensing (QS). More importantly, QQ induced the significant suppression of Gram-negative bacterial community. The average abundance of Gram-positive bacteria at the genus level in the biocake of MBR-QQb (51%) was significantly higher than that of the control MBR (11%) and the MBR with vacant beads (28%). These findings suggest that an unintended condition is created to favor the growth of Gram-positive bacteria in QQ MBRs, resulting in a distinct microbial social network in both bulk sludge and biocake.


Assuntos
Reatores Biológicos/microbiologia , Membranas Artificiais , Microbiota , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Incrustação Biológica , Bactérias Gram-Positivas/crescimento & desenvolvimento , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa