Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Ecotoxicol Environ Saf ; 273: 116172, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458072

RESUMO

The toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is generally believed to be mediated by aryl hydrocarbon receptor (AhR), but some evidence suggests that the effects of TCDD can also be produced through AhR-independent mechanisms. In previous experiments, we found that mainly AhR-dependent mechanism was involved in the migration inhibition of glioblastoma U87 cells by TCDD. Due to the heterogeneity of glioblastomas, not all tumor cells have significant AhR expression. The effects and mechanisms of TCDD on the migration of glioblastomas with low AhR expression are still unclear. We employed a glioblastoma cell line A172 with low AhR expression as a model, using wound healing and Transwell® assay to detect the effect of TCDD on cell migration. We found that TCDD can inhibit the migration of A172 cells without activating AhR signaling pathway. Further, after being pre-treated with AhR antagonist CH223191, the inhibition of TCDD on A172 cells migration was not changed, indicating that the effect of TCDD on A172 cells is not dependent on AhR activation. By transcriptome sequencing analysis, we propose dysregulation of the expression of certain migration-related genes, such as IL6, IL1B, CXCL8, FOS, SYK, and PTGS2 involved in cytokines, MAPK, NF-κB, and IL-17 signaling pathways, as potential AhR-independent mechanisms that mediate the inhibition of TCDD migration in A172 cells.


Assuntos
Glioblastoma , Dibenzodioxinas Policloradas , Humanos , Dibenzodioxinas Policloradas/toxicidade , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Movimento Celular
2.
Ecotoxicol Environ Saf ; 249: 114462, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321681

RESUMO

Dechlorane 602 (Dec 602) has biomagnification potential. Our previous studies suggested that exposure to Dec 602 for 7 days induced colonic inflammation even after 7 days of recovery. To shed some light on the underlying mechanisms, disturbances of gut immunity and gene expression were further studied. Adult C57BL/6 mice were administered orally with Dec 602 for 7 days, then allowed to recover for another 7 days. Colonic type 3 innate lymphoid cells (ILC3s) in lamina propria lymphocytes (LPLs) and lymphocytes in mesenteric lymph nodes (MLNs) were examined by flow cytometry. Expressions of genes in the gut were determined by RNA-Seq. It was found that Dec 602 exposure up-regulated the percentage of CD4+ T cells in MLNs. The mean fluorescent intensity (MFI) of interleukin (IL)- 22 in LPLs was decreased, while the MFI of IL-17a as well as the percentage of IL-17a+ ILC3s in LPLs were increased after exposure to Dec 602. Genes involved in the formation of blood vessels and epithelial-mesenchymal transition were up-regulated by Dec 602. Ingenuity pathway analysis of differentially expressed genes predicted that exposure to Dec 602 resulted in the activation of liver X receptor/retinoid X receptor (LXR/RXR) and suppression of muscle contractility. Our results, on one hand, verified that the toxic effects of Dec 602 on gut immunity could last for at least 14 days, and on the other hand, these results predicted other adverse effects of Dec 602, such as muscle dysfunction. Overall, our studies provided insights for the further investigation of Dec 602 and other emerging environmental pollutants.


Assuntos
Hidrocarbonetos Clorados , Interleucina-17 , Linfócitos , Compostos Policíclicos , Animais , Camundongos , Interleucina-17/metabolismo , Imunidade Inata , Camundongos Endogâmicos C57BL , Expressão Gênica
3.
Ecotoxicol Environ Saf ; 247: 114199, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274317

RESUMO

1,3,6,8-Tetrabromocarbazole (1368-BCZ) is identified as an emerging contaminant that exerts angiogenic effects. Multiple studies indicated there was a positive correlation between angiogenesis and nuclear factor kappa B (NF-κB) activation. While the role of NF-κB in inflammation and apoptosis has been well known, the potential biological effects of 1368-BCZ on NF-κB signaling and related mechanism remain unclear. We, therefore, explored the possible effects of 1368-BCZ on the NF-κB pathway at the gene and protein levels and confirmed that NF-κB activation by 1368-BCZ exposure caused an augmented phosphorylated protein level, induction of NF-κB response element (κBRE)-driven luciferase activity and upregulation of transcriptional level of downstream responsive genes. Although 1368-BCZ did not produce detectable changes in hepatic fibrosis in vivo, it obviously altered the apoptosis in human hepatocellular carcinoma (HepG2) cells. Furthermore, the induction of apoptosis was confirmed by the increased cleaved caspase-3 level. These data revealed the activating effects of 1368-BCZ on NF-κB and its involvement in the underlying mechanisms, providing additional information for toxicology studies of emerging contaminants and introducing a mechanism-based toxicological evaluation of emerging pollutants.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , NF-kappa B/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Carbazóis , Apoptose
4.
Ecotoxicol Environ Saf ; 234: 113357, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272197

RESUMO

Aryl hydrocarbon receptor (AhR) is a ligand-activated receptor to mediates the biological reactions of many environmental and natural compounds, which is highly expressed in glioblastoma. Although it has been reported that AhR agonist emodin can suppress some kinds of tumors, its inhibitory effect on glioblastoma migration and its relationship with AhR remain unclear. Based on the complexity of tumor pathogenesis and the tissue specificity of AhR, we hope can further understand the effect of emodin on glioblastoma and explore its mechanism. We found that the inhibitory effect of emodin on the migration of U87 glioblastoma cells increased with time, and the cell migration ability was inhibited by about 25% after 36 h exposure. In this process, emodin promoted the expression of the tumor suppressor IL24 by activating the AhR signaling pathway. Reducing the expression of AhR or IL24 by interfering RNA could block or relieve the inhibitory effect of emodin on the U87 cells migration, which indicates the inhibition of emodin on the migration of glioblastoma is mediated by the AhR-IL24 axis. Our data proved the AhR-IL24 signal axis is an important pathway for emodin to inhibit the migration of glioblastoma, and the AhR signaling pathway can be used as a key target to research the regulation effect and its mechanism of compounds on glioblastoma migration.

5.
J Neurochem ; 158(6): 1254-1262, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33278027

RESUMO

Acetylcholinesterase (AChE, EC 3.1.1.7) plays important roles in cholinergic neurotransmission and has been widely recognized as a biomarker for monitoring pollution by organophosphate (OP) and carbamate pesticides. Dioxin is an emerging environmental AChE disruptor and is a typical persistent organic pollutant with multiple toxic effects on the nervous system. Growing evidence has shown that there is a significant link between dioxin exposure and neurodegenerative diseases and neurodevelopmental disorders, most of which involve AChE and cholinergic dysfunctions. Therefore, an in-depth understanding of the effects of dioxin on AChE and the related mechanisms of action might help to shed light on the molecular bases of dioxin impacts on the nervous system. In the past decade, the effects of dioxins on AChE have been revealed in cultured cells of different origins and in rodent animal models. Unlike OP and carbamate pesticides, dioxin-induced AChE disturbance is not due to direct inhibition of enzymatic activity; instead, dioxin causes alterations of AChE expression in certain models. As a widely accepted mechanism for most dioxin effects, the aryl hydrocarbon receptor (AhR)-dependent pathway has become a research focus in studies on the mechanism of action of dioxin-induced AChE dysregulation. In this mini-review, the effects of dioxin on AChE and the diverse roles of the AhR pathway in AChE regulation are summarized. Additionally, the involvement of AhR in AChE regulation during different neurodevelopmental processes is discussed. These AhR-related findings might also provide new insight into AChE regulation triggered by diverse xenobiotics capable of interacting with AhR.


Assuntos
Acetilcolinesterase/metabolismo , Dioxinas/metabolismo , Neurônios/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Dioxinas/toxicidade , Humanos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos
6.
Chem Res Toxicol ; 33(2): 614-624, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31878777

RESUMO

Dioxins, mostly through activation of aryl hydrocarbon receptor (AhR), are potent toxic substances widely distributed in the environment, while moderated suppression of AhR also exhibits anti-tumor effects. Therefore, the proper modulation of AhR activity may counteract AhR-mediated toxicities and certain diseases. In this investigation, we identified several novel AhR moderate agonists and antagonists using chemical biology approaches. The mechanisms and mode of interactions with AhR by these hits were also revealed using both experimental and computational studies. The newly identified AhR moderate agonists and antagonists were predicted to bind to AhR and modulate AhR signaling. The structure-activity relationships of moderate agonists and antagonists and their unique binding features with AhR have created a solid framework for further optimization of the next generation of AhR modulators.


Assuntos
Dioxinas/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Environ Sci Technol ; 53(21): 12803-12811, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31566365

RESUMO

Field investigations have revealed the ability of the climbing perch Anabas testudineus to survive in highly contaminated water bodies. The aryl hydrocarbon receptor (AhR) pathway is vital in mediating the toxicity of aromatic hydrocarbon contaminants, and genotypic variation in the AhR can confer resistance to these contaminants. Thus, we characterized the AhR pathway in A. testudineus in order to understand the mechanism(s) underlying the resistance of this species to contaminants and to broaden current knowledge on teleost AhR. In A. testudineus, four AhRs, two AhR nuclear translocators (ARNTs), and one AhR repressor (AhRR) were found. Transient transfection assays revealed that AhR1a, AhR1b, and AhR2b were functional, whereas AhR2a was poorly activated by the potent agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Two ARNTs (partner of AhR) and one AhRR (repressor of AhR) all were functional with each of the active AhR. As a major form, the insensitivity of AhR2a might serve as a potential mechanism for A. testudineus' reduced sensitivity to severe contamination. We explored the key residues that may account for AhR2a's insensitivity in silico and then functionally validated them in vitro. Two sites (VCS322-324, M370) in its ligand-binding domain (LBD) were proved critical for its sensitivity to TCDD. This systematic exploration of the AhR pathway showed that most members have maintained their traditional functions as expected, whereas a nonfunctionalization event has occurred for AhR2a.


Assuntos
Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Animais , Peixes
8.
J Environ Sci (China) ; 76: 368-376, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528028

RESUMO

Emerging evidence showed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) could induce expression of certain reactivation-associated genes in astrocytes, however, the consequent cellular effects and molecular mechanisms are still unclear. During the process of astrocyte reactivation, migration is a critical cellular event. In the present study, we employed wound-healing assay and Transwell® motility assay to explore the effects of TCDD on cell migration in primary cultured rat cortical astrocytes. We found that upon TCDD treatments at relative low concentrations (10-10 and/or 10-9 mol/L), the ability of primary astrocytes to migrate horizontally and vertically was promoted. In line with this cellular effect, the mRNA expression of two pro-migratory genes, including cell division cycle 42 (CDC42) and matrix metalloproteinase 2 (MMP2) was induced by TCDD treatment. Dioxin exerts its toxic effects mainly through aryl hydrocarbon receptor (AhR) pathway. So the role of AhR pathway in the pro-migratory effects of TCDD was examined using an AhR antagonist, CH223191. We found that application of CH223191 significantly reversed the pro-migratory effects of TCDD. Interestingly, the basal ability of horizontal migration as well as basal levels of CDC42 and MMP2 expression were dramatically reduced suggesting a possible physiological role of AhR in maintaining the endogenous migration ability of the primary astrocytes. These findings support the notion that dioxin promotes astrocyte reactivation at molecular and cellular levels.


Assuntos
Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Astrócitos/metabolismo , Células Cultivadas , Ratos , Ratos Sprague-Dawley
9.
Environ Sci Technol ; 52(5): 2926-2933, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437390

RESUMO

Airborne persistent toxic substances are associated with health impacts resulting from air pollution, for example, dioxins, dioxin-like polychlorinated biphenyls, and certain polycyclic aromatic hydrocarbons (PAHs), which activate aryl hydrocarbon receptors (AhR) and thereby produce adverse outcomes. Thus, a bioassay for evaluating AhR activation is required for risk assessment of ambient-air samples, and for this purpose, we developed a new and sensitive recombinant mouse hepatoma cell line, CBG2.8D, in which a novel luciferase-reporter plasmid containing two copies of a newly designed dioxin-responsive domain and a minimal promoter derived from a native gene were integrated. The minimal detection limit for 2,3,7,8-tetrachlorodibenzo- p-dioxin with this assay system was 0.1 pM. We used CBG2.8D to determine dioxin levels in 45 ambient-air samples collected in Beijing. The measured bioanalytical equivalent (BEQ) values were closely correlated with the toxic equivalent values obtained from chemical analysis. In haze ambient-air samples, the total activation of aryl hydrocarbon receptors (TAA) was considerably higher than the BEQ of dioxin-rich fractions, according to the results of the cell-based bioassay. Notably, the haze samples contained abundant amounts of PAHs, whose relative toxicity equivalent was correlated with the TAA; this finding suggests that PAHs critically contribute to the AhR-related biological impacts of haze ambient-air samples.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Animais , Pequim , Bioensaio , Camundongos , Receptores de Hidrocarboneto Arílico
10.
Environ Sci Technol ; 52(15): 8065-8074, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995397

RESUMO

Acetylcholinesterase (AChE, EC 3.1.1.7) is a classical biomarker for monitoring contamination and intoxication of organophosphate (OP) and carbamate pesticides. In addition to these classical environmental AChE inhibitors, other organic toxic substances have been found to alter AChE activity in various species. These emerging organic AChE disruptors include certain persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and wildly used chemicals, most of which have received considerable public health concern in recent years. It is necessary to re-evaluate the environmental significances of AChE in terms of these toxic substances. Therefore, the present review is aiming to summarize correlations of AChE activity of certain organisms with the level of the contaminants in particular habitats, disruptions of AChE activity upon treatment with the emerging disruptors in vivo and in vitro, and action mechanisms underlying the effects on AChE. Over 40 chemicals belonging to six main categories were reviewed, including 12 POPs listed in the Stockholm Convention. AChE activity in certain organisms has been found to be well correlated with the contamination level of certain persistent pesticides and PAHs in particular habitats. Moreover, it has been documented that most of the listed toxic chemicals could inhibit AChE activity in diverse species ranging from invertebrates to mammals. Besides directly inactivating AChE, the mechanisms in terms of interference with the biosynthesis have been recognized for some emerging AChE disruptors, particularly for dioxins. The collected evidence suggests that AChE could serve as a potential biomarker for a diverse spectrum of organic environmental pollutants.


Assuntos
Poluentes Ambientais , Praguicidas , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Biomarcadores , Monitoramento Ambiental
11.
J Environ Sci (China) ; 51: 165-172, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28115127

RESUMO

The health risk of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like PCBs (dl-PCBs) to human being should be assessed regularly. To evaluate the contamination levels in various food products in the Chinese market and to assess the dietary exposure of the Chinese population, 11 varieties of food groups totaling 634 samples including beef and mutton, chicken and duck, pork, fish and seafood, milk and dairy products were evaluated. The average concentrations of PCDD/Fs in all groups ranged from 0.291 to 8.468pg/g whole weight (w.w.). The average toxic equivalency concentrations were from 0.012pg TEQ/g w.w. for cereal to 0.367pg TEQ/g fat for marine oil. OCDD and 2,3,7,8-TCDF were the dominant congeners in foodstuffs. The dietary estimated mean intake for the Chinese rural and urban populations were 0.656 and 0.514pg TEQ/kg body weight/day, respectively, however, the cereal group exposure were higher to the estimate daily intake and contributed 81% for rural and 48% for urban population, followed by fish and seafood which contributed 4% and 16% to the estimate daily intake. The estimated dietary intakes were compared with the toxicological reference values and showed that both rural and urban populations were well below those values.


Assuntos
Dibenzofuranos Policlorados/análise , Dieta/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/análise , Contaminação de Alimentos/análise , Dibenzodioxinas Policloradas/análise , China , Humanos
12.
J Environ Sci (China) ; 39: 218-227, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26899660

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure in humans is associated with marked immune suppressions and increased incidence of lymphoblastic diseases. To elucidate mechanisms of impairments in humoral immune responses, we used a murine model. Following a 20-week administration of low doses of TCDD, we observed severely reduced antibody titers, dramatically decreased number of splenic Th1 and Th2 cells and an increase in CD19(+) B cells. Transcriptional profiling of CD19(+) B cells showed that markers of pre-B cells were significantly elevated, indicating delayed B cell maturation. These changes in B cells were accompanied by decreases of T helper cell numbers and reduced IgM and IgG titers. A transcriptome analysis of splenic B cells followed by Ingenuity Pathway Analysis (IPA) revealed a set of differentially expressed genes known to play roles in tumorigenesis, cell-proliferation and cell-migration. The most up-regulated transcript gene was Eph receptor A2 (EphA2), a known oncogene, and the most down-regulated transcript was ZBTB16 that codes for a negative transcriptional regulator important in epigenetic chromatin remodeling. IPA identified cAMP-responsive element modulator (CREM) and cAMP-responsive element binding protein 1 (CREB1) as top upstream regulators. Consistently, a MAPPER promoter database analysis showed that all top dysregulated genes had CREM and/or CREB1 binding sites in their promoter regions. In summary, our data showed that chronic TCDD exposure in mice caused suppressed humoral immunity accompanied with profound dysregulation of gene expression in splenic B-lymphocytes, likely through cAMP-dependent pathways. This dysregulation resulted in impairments in T-cell and B-cell differentiation and activation of the tumorigenic transcription program.


Assuntos
Linfócitos B/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Baço/imunologia , Células Th1/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Peso Corporal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/genética , Imunoglobulinas/metabolismo , Interleucina-6/metabolismo , Interleucinas/metabolismo , Linfoma não Hodgkin/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/citologia , Células Th1/metabolismo , Células Th2/citologia , Células Th2/metabolismo , Interleucina 22
13.
J Environ Sci (China) ; 39: 165-174, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26899655

RESUMO

Aryl hydrocarbon receptor (AhR), a ligand-dependent nuclear receptor, is involved in a diverse spectrum of biological and toxicological effects. Due to the lack of three dimensional (3D) crystal or nuclear magnetic resonance structure, the mechanisms of these complex effects of AhR remain to be unclear. Also, commercial monoclonal antibodies (mAbs) against human AhR protein (hAhR), as alternative immunological tools, are very limited. Thus, in order to provide more tools for further studies on hAhR, we prepared two mAbs (1D6 and 4A6) against hAhR. The two newly generated mAbs specifically bound to amino acids 484-508 (located in transcription activation domain) and amino acids 201-215 (located in Per-ARNT-Sim domain) of hAhR, respectively. These epitopes were new as compared with those of commercial mAbs. The mAbs were also characterized by enzyme-linked immunosorbent assay, western blot, immunoprecipitation and indirect immunofluorescence assay in different cell lines. The results showed that the two mAbs could recognize the linearized AhRs in six different human cell lines and a rat hepatoma cell line, as well as the hAhR with native conformations. We concluded that the newly generated mAbs could be employed in AhR-based bioassays for analysis of environmental contaminants, and held great potential for further revealing the spatial structure of AhR and its biological functions in future studies.


Assuntos
Anticorpos Monoclonais/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Linhagem Celular Tumoral , Epitopos/imunologia , Humanos , Camundongos , Ratos , Receptores de Hidrocarboneto Arílico/química
14.
Environ Sci Technol ; 49(16): 9518-31, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26079192

RESUMO

The aryl hydrocarbon receptor (AhR) is a highly evolutionary conserved, ligand-activated transcription factor that is best known to mediate the toxicities of dioxins and dioxin-like compounds. Phenotype of AhR-null mice, together with the recent discovery of a variety of endogenous and plant-derived ligands, point to the integral roles of AhR in normal cell physiology, in addition to its roles in sensing the environmental chemicals. Here, we summarize the current knowledge about AhR signaling pathways, its ligands and AhR-mediated effects on cell specialization, host defense and detoxification. AhR-mediated health effects particularly in liver, immune, and nervous systems, as well as in tumorgenesis are discussed. Dioxin-initiated embryotoxicity and immunosuppressive effects in fish and birds are reviewed. Recent data demonstrate that AhR is a convergence point of multiple signaling pathways that inform the cell of its external and internal environments. As such, AhR pathway is a promising potential target for therapeutics targeting nervous, liver, and autoimmune diseases through AhR ligand-mediated interventions and other perturbations of AhR signaling. Additionally, using available laboratory data obtained on animal models, AhR-centered adverse outcome pathway analysis is useful in reexamining known and potential adverse outcomes of specific or mixed compounds on wildlife.


Assuntos
Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Animais , Dioxinas/efeitos adversos , Evolução Molecular , Saúde , Humanos , Ligantes
15.
Int J Mol Sci ; 15(4): 6475-87, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24743890

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of halogenated aromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). When activated by dioxin, the cytosolic AhR protein complex translocates into the nucleus and dimerizes with the ARNT (Ah receptor nuclear translocator) protein. The heteromeric ligand:AhR/Arnt complex then recognizes and binds to its specific DNA recognition site, the dioxin response element (DRE). DREs are located upstream of cytochrome P4501A1 (CYP1A1) and other AhR-responsive genes, and binding of the AhR complex stimulates their transcription. Although CYP1A1 expression has been used as the model system to define the biochemical and molecular mechanism of AhR action, there is still limited knowledge about the roles of each of the seven DREs located in the CYP1A1 promoter. These seven DREs are conserved in mouse, human and rat. Deletion analysis showed that a single DRE at -488 was enough to activate the transcription. Truncation analysis demonstrated that the DRE at site -981 has the highest transcriptional efficiency in response to TCDD. This result was verified by mutation analysis, suggesting that the conserved DRE at site -981 could represent a significant and universal AhR regulatory element for CYP1A1. The reversed substituted intolerant core sequence (5'-GCGTG-3' or 5'-CACGC-3') of seven DREs reduced the transcriptional efficiency, which illustrated that the adjacent sequences of DRE played a vital role in activating transcription. The core DRE sequence (5'-TNGCGTG-3') tends to show a higher transcriptional level than that of the core DRE sequence (5'-CACGCNA-3') triggered by TCDD. Furthermore, in the core DRE (5'-TNGCGTG-3') sequence, when "N" is thymine or cytosine (T or C), the transcription efficiency was stronger compared with that of the other nucleotides. The effects of DRE orientation, DRE adjacent sequences and the nucleotide "N" in the core DRE (5'-TNGCGTG-3') sequence on the AhR-regulated CYP1A1 transcription in response to TCDD were studied systematically, and our study laid a good foundation for further investigation into the AhR-dependent transcriptional regulation triggered by dioxin and dioxin-like compounds.


Assuntos
Citocromo P-450 CYP1A1/genética , Dibenzodioxinas Policloradas/toxicidade , Elementos de Resposta/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ratos
16.
Cancers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893229

RESUMO

BACKGROUND: Both cervical cancer and cervical intraepithelial neoplasia (CIN) are associated with human papillomavirus (HPV) infection at different anogenital sites, but the infection features of high-risk (HR) HPVs at these sites and their association with cervical lesions have not been well characterized. Given the limitation of cervical HPV 16/18 test in screening patients with high-grade CIN (CIN 2+), studies on whether non-16/18 HR-HPV subtype(s) have potential as additional indicator(s) to improve CIN 2+ screening are needed. METHODS: The infection of 15 HR-HPVs in vulva, anus, vagina, and cervix of 499 Chinese women was analyzed, and CIN lesion-associated HR-HPV subtypes were revealed. RESULTS: In addition to the well-known cervical-cancer-associated HPV 16, 52, and 58, HPV 51, 53, and 56 were also identified as high-frequency detected subtypes prevalently and consistently present at the anogenital sites studied, preferentially in multi-infection patterns. HPV 16, 52, 58, 56, and 53 were the top five prevalent subtypes in patients with CIN 2+. In addition, we found that cervical HPV 33/35/52/53/56/58 co-testing with HPV 16/18 might improve CIN 2+ screening performance. CONCLUSION: This study provided a new insight into HR-HPV screening strategy based on different subtype combinations, which might be used in risk stratification clinically.

17.
Chemosphere ; 349: 140767, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992903

RESUMO

Given its wide distribution in the environment and latent toxic effects, 1,3,6,8-tetrabromo-9H-carbazole (1368-BCZ) is an emerging concern that has gained increasing attention globally. 1368-BCZ exposure is reported to have potential cardiovascular toxicity. Although atherosclerosis is a cardiovascular disease and remains a primary cause of mortality worldwide, no evidence has been found regarding the impact of 1368-BCZ on atherosclerosis. Therefore, we aimed to explore the deleterious effects of 1368-BCZ on atherosclerosis and the underlying mechanisms. Serum samples from 1368-BCZ-treated atherosclerotic model mice were subjected to metabolomic profiling to investigate the adverse influence of the pollutant. Subsequently, the molecular mechanism associated with the metabolic pathway of atherosclerotic mice that was identified following 1368-BCZ exposure was validated in vitro. Serum metabolomics analysis revealed that 1368-BCZ significantly altered the tricarboxylic acid cycle, causing a disturbance in energy metabolism. In vitro, we further validated general markers of energy metabolism based on metabolome data: 1368-BCZ dampened adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS) production. Furthermore, blocking the aryl hydrocarbon receptor (AhR) reversed the high production of ROS induced by 1368-BCZ. It is concluded that 1368-BCZ decreased the ATP synthesis by disturbing the energy metabolism, thereby stimulating the AhR-mediated ROS production and presumably causing aggravated atherosclerosis. This is the first comprehensive study on the cardiovascular toxicity and mechanism of 1368-BCZ based on rodent models of atherosclerosis and integrated with in vitro models.


Assuntos
Aterosclerose , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Camundongos , Espécies Reativas de Oxigênio , Metabolômica , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Trifosfato de Adenosina
18.
Sensors (Basel) ; 12(12): 16710-31, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23443395

RESUMO

With the development of biotechnology, approaches based on antibodies, such as enzyme-linked immunosorbent assay (ELISA), active aryl hydrocarbon immunoassay (Ah-I) and other multi-analyte immunoassays, have been utilized as alternatives to the conventional techniques based on gas chromatography and mass spectroscopy for the analysis of dioxin and dioxin-like compounds in environmental and biological samples. These screening methods have been verified as rapid, simple and cost-effective. This paper provides an overview on the development and application of antibody-based approaches, such as ELISA, Ah-I, and multi-analyte immunoassays, covering the sample extraction and cleanup, antigen design, antibody preparation and immunoanalysis. However, in order to meet the requirements for on-site fast detection and relative quantification of dioxins in the environment, further optimization is needed to make these immuno-analytical methods more sensitive and easy to use.


Assuntos
Anticorpos/química , Dioxinas/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio/métodos , Anticorpos/imunologia , Dioxinas/química , Dioxinas/imunologia , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/imunologia
19.
Sci Total Environ ; 832: 154762, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364153

RESUMO

Emerging evidence supports that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impacts the gut microbiota and metabolic pathways. TCDD can be transmitted from mother to child; thus, we hypothesize that maternal exposure to TCDD may affect the gut microbiota in mothers and offspring. To acquire in vivo evidence supporting this hypothesis, female C57BL/6 mice were administered with TCDD (0.1 and 10 µg/kg body weight (bw)) during pregnancy and lactation periods, and then changes of colonic microbiota in offspring and mothers were evaluated. High-throughput sequencing of the V4 regions of the 16S rRNA gene was performed. The composition and structure of the colonic microbiota in offspring and mothers were significantly influenced by 10 µg/kg bw TCDD as demonstrated by upregulation of harmful bacteria and downregulation of beneficial bacteria. Paradoxically, pathogenic bacteria and opportunistic pathogens were conversely decreased in the offspring of the low-dose TCDD treatment group. Tryptophan (Trp) metabolism exhibited a noticeable change caused by the alteration of colonic microbiota in offspring after maternal exposure to 10 µg/kg bw TCDD, which showed a linear dependence, demonstrating that pathogens or opportunistic pathogens may accelerate the dysbiosis of Trp metabolism. Trp metabolism dysregulation caused by the changed colonic microbiota may subsequently impact other intestinal segments or even living organisms. Our study provides new evidence indicating a potential influence of early TCDD exposure on the colonic microbiota and metabolism.


Assuntos
Microbiota , Dibenzodioxinas Policloradas , Efeitos Tardios da Exposição Pré-Natal , Animais , Bactérias , Peso Corporal , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Camundongos , Camundongos Endogâmicos C57BL , Mães , Dibenzodioxinas Policloradas/toxicidade , Gravidez , RNA Ribossômico 16S
20.
J Hazard Mater ; 430: 128458, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183049

RESUMO

Despite numerous studies on effects of environmental accumulation of nano-pollutants, the influence of nanoparticles on the biological perturbations of coexisting pollutants in the environment remained unknown. The present study aimed at elucidating the perturbations of six environmental nanoparticles on detoxification of dioxin-induced toxicity at cellular level. We discovered that there was no remarkable difference in the cell uptake and intracellular distributions of these six nanoparticles. However, they have different effects on the detoxification of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Multi-walled carbon nanotubes (MWCNTs) inhibited the translocation of aryl hydrocarbon receptor (AhR) from cytosol to the nucleus, leading to the downregulation of cytochrome P450 family 1 subfamily A member 1 (CYP1A1) and inhibition of detoxification function. These findings demonstrate that MWCNTs can impact the potential detoxification of dioxin-induced toxicity through modulating AhR signaling pathway. Co-exposures to MWCNTs and dioxin may cause even more toxicity than single exposure to dioxin or MWCNTs alone.


Assuntos
Dioxinas , Nanotubos de Carbono , Dibenzodioxinas Policloradas , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Dioxinas/toxicidade , Nanotubos de Carbono/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa