Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203806

RESUMO

Schizophrenia is a highly heritable neuropsychiatric disorder characterized by cognitive and social dysfunction. Genetic, epigenetic, and environmental factors are together implicated in the pathogenesis and development of schizophrenia. DNA methylation, 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) have been recognized as key epigenetic elements in neurodevelopment, ageing, and neurodegenerative diseases. Recently, distinctive 5mC and 5hmC pattern and expression changes of related genes have been discovered in schizophrenia. Antipsychotic drugs that affect 5mC status can alleviate symptoms in patients with schizophrenia, suggesting a critical role for DNA methylation in the pathogenesis of schizophrenia. Further exploring the signatures of 5mC and 5hmC in schizophrenia and developing precision-targeted epigenetic drugs based on this will provide new insights into the diagnosis and treatment of schizophrenia.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , 5-Metilcitosina , Esquizofrenia/genética , Envelhecimento
2.
Oral Dis ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798926

RESUMO

BACKGROUND: BRD4, belonging to the bromodomain extra-terminal (BET) protein family, plays a unique role in tumor progression. However, the potential impact of BRD4 in ameloblastoma (AM) remains largely unknown. Herein, we aimed to assess the expression and functional role of BRD4 in AM. METHODS: The expression level of BRD4 was assessed by immunohistochemistry. The proliferation, migration, invasion, and tumorigenic abilities of AM cells were assessed by a series of assays. To explore the molecular expression profile of BRD4-depleted AM cells, RNA sequencing (RNA-seq) was performed. Bioinformatic analysis was performed on AM expression matrices obtained from the Gene Expression Omnibus (GEO). The therapeutic efficacy of BET-inhibitors (BETi) was assessed with AM patient-derived organoids. RESULTS: Upregulation of BRD4 was observed in conventional AMs, recurrent AMs, and ameloblastic carcinomas. Depletion of BRD4 inhibited proliferation, invasion, migration, and tumorigenesis in AM. Administration of BETi attenuated the aggressiveness of AM and the growth of AM patient-derived organoids. Bioinformatic analysis indicated that BRD4 may promote AM progression by regulating the Wnt pathway and stemness-associated pathways. CONCLUSION: BRD4 increases the aggressiveness and promotes the recurrence of ameloblastoma by regulating the Wnt pathway and stemness-associated pathways. These findings highlight BRD4 as a promising therapeutic target in AM management.

3.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762200

RESUMO

Epigenetic methylation has been shown to play an important role in transcriptional regulation and disease pathogenesis. Recent advancements in detection techniques have identified DNA N6-methyldeoxyadenosine (6mA) and RNA N6-methyladenosine (m6A) as methylation modifications at the sixth position of adenine in DNA and RNA, respectively. While the distributions and functions of 6mA and m6A have been extensively studied in prokaryotes, their roles in the mammalian brain, where they are enriched, are still not fully understood. In this review, we provide a comprehensive summary of the current research progress on 6mA and m6A, as well as their associated writers, erasers, and readers at both DNA and RNA levels. Specifically, we focus on the potential roles of 6mA and m6A in the fundamental biological pathways of the mammalian genome and highlight the significant regulatory functions of 6mA in neurodegenerative diseases.


Assuntos
DNA , RNA , Animais , Metilação , DNA/genética , RNA/genética , Adenina , Adenosina/genética , Mamíferos/genética
4.
Int J Oral Sci ; 16(1): 21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424060

RESUMO

Ameloblastoma is a benign tumor characterized by locally invasive phenotypes, leading to facial bone destruction and a high recurrence rate. However, the mechanisms governing tumor initiation and recurrence are poorly understood. Here, we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution. Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response (IR), bone remodeling (BR), tooth development (TD), epithelial development (ED), and cell cycle (CC) signatures. Of note, we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence, which was dominated by the EZH2-mediated program. Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids. These data described the tumor subpopulation and clarified the identity, function, and regulatory mechanism of CC ameloblastoma cells, providing a potential therapeutic target for ameloblastoma.


Assuntos
Ameloblastoma , Humanos , Ameloblastoma/genética , Ameloblastoma/patologia , Recidiva Local de Neoplasia , Fenótipo , Transformação Celular Neoplásica , Perfilação da Expressão Gênica
5.
Biology (Basel) ; 12(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36829430

RESUMO

DNA cytosine methylation is a principal epigenetic mechanism underlying transcription during development and aging. Growing evidence suggests that DNA methylation plays a critical role in brain function, including neurogenesis, neuronal differentiation, synaptogenesis, learning, and memory. However, the mechanisms underlying aberrant DNA methylation in neurodegenerative diseases remain unclear. In this review, we provide an overview of the contribution of 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) to brain development and aging, with a focus on the roles of dynamic 5mC and 5hmC changes in the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Identification of aberrant DNA methylation sites could provide potential candidates for epigenetic-based diagnostic and therapeutic strategies for neurodegenerative diseases.

6.
Int J Oral Sci ; 15(1): 38, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679344

RESUMO

Pleomorphic adenoma (PA) is the most common benign tumour in the salivary gland and has high morphological complexity. However, the origin and intratumoral heterogeneity of PA are largely unknown. Here, we constructed a comprehensive atlas of PA at single-cell resolution and showed that PA exhibited five tumour subpopulations, three recapitulating the epithelial states of the normal parotid gland, and two PA-specific epithelial cell (PASE) populations unique to tumours. Then, six subgroups of PASE cells were identified, which varied in epithelium, bone, immune, metabolism, stemness and cell cycle signatures. Moreover, we revealed that CD36+ myoepithelial cells were the tumour-initiating cells (TICs) in PA, and were dominated by the PI3K-AKT pathway. Targeting the PI3K-AKT pathway significantly inhibited CD36+ myoepithelial cell-derived tumour spheres and the growth of PA organoids. Our results provide new insights into the diversity and origin of PA, offering an important clinical implication for targeting the PI3K-AKT signalling pathway in PA treatment.


Assuntos
Adenoma Pleomorfo , Mioepitelioma , Humanos , Adenoma Pleomorfo/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transcriptoma
7.
J Genet Genomics ; 49(3): 230-239, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34757039

RESUMO

Radiotherapy for head and neck cancer can cause serious side effects, including severe damage to the salivary glands, resulting in symptoms such as xerostomia, dental caries, and oral infection. Because of the lack of long-term treatment for the symptoms of xerostomia, current research has focused on finding endogenous stem cells that can differentiate into various cell lineages to replace lost tissues and restore functions. Here, we report that Sox9+ cells can differentiate into various salivary epithelial cell lineages under homeostatic conditions. After ablating Sox9+ cells, the salivary glands of irradiated mice showed more severe phenotypes and the reduced proliferative capacity. Analysis of online single-cell RNA-sequencing data reveals the enrichment of the Wnt/ß-catenin pathway in the Sox9+ cell population. Furthermore, treatment with a Wnt/ß-catenin inhibitor in irradiated mice inhibits the regenerative capability of Sox9+ cells. Finally, we show that Sox9+ cells are capable of forming organoids in vitro and that transplanting these organoids into salivary glands after radiation partially restored salivary gland functions. These results suggest that regenerative therapy targeting Sox9+ cells is a promising approach to treat radiation-induced salivary gland injury.


Assuntos
Cárie Dentária , Xerostomia , Animais , Cárie Dentária/complicações , Camundongos , Regeneração , Glândulas Salivares/metabolismo , Xerostomia/etiologia , beta Catenina/genética , beta Catenina/metabolismo
8.
Front Oncol ; 12: 900108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185257

RESUMO

Background: FOSL1, a key component of the Activating protein-1 (AP-1) transcriptional complex, plays an important role in cancer cell migration, invasion, and proliferation. However, the impact of FOSL1 in ameloblastoma (AM) has not been clarified. Herein, we aimed to assess the expression of FOSL1 and investigate its functional role in AM. Methods: The expression of FOSL1 was examined based on an immunohistochemistry analysis of 96 AM samples. Cell proliferation, migration, invasion, and tumorigenesis were assessed using Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and sphere formation assays. RNA sequencing (RNA-seq) was employed to investigate the molecular alterations of AM cells upon FOSL depletion. Microarrays of AMs were downloaded from the Gene Expression Omnibus (GEO) database for bioinformatics analysis. In addition, patient-derived AM organoids were used to evaluate the therapeutic value of the AP-1 inhibitor. Results: FOSL1 was detected in the nuclei of AMs and upregulated in conventional AMs compared to unicystic AMs and normal oral epithelium. Compared with primary AM, FOSL1 expression was significantly increased in recurrent AM. Genetic knockdown of FOSL1 suppressed the proliferation, migration, invasion, and sphere formation of AMs. Similar results were also observed by pharmacological inhibition of AP-1 activity. Moreover, the AP-1 inhibitor T5224 impeded the growth of organoids derived from AM patients. Mechanistically, our Ingenuity Pathway Analysis (IPA) and gene set enrichment analysis (GSEA) results revealed that depletion of FOSL1 inactivated kinetochore metaphase signaling and the epithelial-mesenchymal transition pathway and then impaired the aggressiveness of AM cells accordingly. Conclusion: FOSL1 promotes tumor recurrence and invasive growth in AM by modulating kinetochore metaphase signaling and the epithelial-mesenchymal transition pathway; thus, it represents a promising therapeutic target for AM treatment.

9.
Front Aging Neurosci ; 14: 934224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912074

RESUMO

Because of the difficulty in collecting fresh brains of humans at different ages, it remains unknown how epigenetic regulation occurs in the primate brains during aging. In the present study, we examined the genomic distribution of 5hmC, an indicator of DNA methylation, in the brain regions of non-human primates (rhesus monkey) at the ages of 2 (juvenile), 8 (young adult), and 17 (old) years. We found that genomic 5hmC distribution was accumulated in the monkey brain as age increased and displayed unique patterns in the cerebellum and striatum in an age-dependent manner. We also observed a correlation between differentially hydroxymethylated regions (DhMRs) and genes that contribute to brain region-related functions and diseases. Our studies revealed, for the first time, the brain-region and age-dependent 5hmC modifications in the non-human primate and the association of these 5hmC modifications with brain region-specific function and potentially aging-related brain diseases.

10.
Cell Transplant ; 29: 963689720943583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749148

RESUMO

The aim of this study was to investigate claudin-7 (CLDN7) expression in salivary adenoid cystic carcinoma (SACC) and its function in SACC cells. We determined CLDN7 expression in SACC tumors via immunohistochemistry and western blotting and evaluated the association between CLDN7 expression and clinicopathologic variables. Besides this, we constructed a stably transfected CLDN7 knockdown SACC-LM cell line via RNAi and assessed its biological behavior changes (cell viability, migration, and invasion). The correlation between CLDN7 and epithelial-mesenchymal transition (EMT) was analyzed. Additionally, a subcutaneous tumor formation model was used to assess SACC-LM cells tumorigenicity after the CLDN7 knockdown. In the present study, we found the CLDN7 expression of tumor group was lower than that in normal salivary glands and was significantly correlated with lymph node metastasis, recurrence, and gender. CLDN7 knockdown could add the proliferation and metastasis ability of SACC by regulating EMT through Wnt/ß-catenin signaling pathway. In addition, CLDN7 knockdown in SACC promoted tumor growth in nude mice. CLDN7 inhibits cell proliferation and metastasis by inactivating the Wnt/ß-catenin signaling in SACC. Thus, CLDN7 expression might be a useful marker to identify the potential for progression in SACC.


Assuntos
Carcinoma Adenoide Cístico/metabolismo , Claudinas/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Adenoide Cístico/patologia , Proliferação de Células/fisiologia , Claudinas/biossíntese , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias das Glândulas Salivares/patologia , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa