Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Fish Shellfish Immunol ; 149: 109524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527657

RESUMO

Recent studies have increasingly linked miRNAs with the modulation of inflammatory responses and immunosuppressive activities. This investigation reveals that mir-30e-3p selectively binds to and modulates gimap8, as demonstrated by luciferase reporter assays and qPCR analyses. Upon LPS stimulation of CIK cells, mir-30e-3p expression was notably elevated, inversely correlating with a decrease in gimap8 mRNA levels. Overexpression of mir-30e-3p attenuated the mRNA levels of pro-inflammatory cytokines beyond the effect of LPS alone, suggesting a regulatory role of mir-30e-3p in inflammation mediated by the gimap8 gene. These insights contribute to our understanding of the complex mechanisms governing inflammatory and immune responses.


Assuntos
Carpas , Proteínas de Peixes , Inflamação , Lipopolissacarídeos , MicroRNAs , Animais , MicroRNAs/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Lipopolissacarídeos/farmacologia , Carpas/genética , Carpas/imunologia , Inflamação/genética , Inflamação/imunologia , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/imunologia , Imunidade Inata/genética , Linhagem Celular
2.
BMC Genomics ; 24(1): 591, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798722

RESUMO

BACKGROUND: Circular RNAs (circRNAs), as important non-coding RNAs (ncRNAs), are involved in many biological activities. However, the exact chemical mechanism behind fat accumulation is unknown. In this paper, we obtained the expression profiles of circRNAs using high-throughput sequencing and investigated their differential expression in subcutaneous fat tissue of Duolang and Small Tail Han sheep. RESULTS: From the transcriptomic analysis, 141 differentially expressed circRNAs were identified, comprising 61 up-regulated circRNAs and 80 down-regulated circRNAs. These host genes were primarily enriched in the MAPK and AMPK signaling pathways which is closely associated with fat deposition regulation. We identified circRNA812, circRNA91, and circRNA388 as vital genes in fat deposition by miRNA-circRNA target gene prediction. The functional annotation results of target genes of key circRNAs showed that the signaling pathways mainly included PI3K-Akt and AMPK. We constructed the competing endogenous RNA (ceRNA) regulatory network to study the role of circRNAs in sheep lipid deposition, and circRNA812, circRNA91, and circRNA388 can adsorb more miRNAs. NC_040253.1_5757, as the source of miRNA response element (MRE) among the three, may play an important role during the process of sheep fat deposition. CONCLUSIONS: Our study gives a systematic examination of the circRNA profiles expressed in sheep subcutaneous fat. These results from this study provide some new basis for understanding circRNA function and sheep fat metabolism.


Assuntos
MicroRNAs , RNA Circular , Animais , Ovinos/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Quinases Ativadas por AMP/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Gordura Subcutânea/metabolismo , Redes Reguladoras de Genes
3.
BMC Genomics ; 24(1): 73, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782132

RESUMO

BACKGROUND: A considerable fraction of microRNAs (miRNAs) are highly conserved, and certain miRNAs correspond to genomic clusters. The clustering of miRNAs can be advantageous, possibly by allowing coordinated expression. However, little is known about the evolutionary forces responsible for the loss and acquisition of miRNA and miRNA clusters. RESULTS: The results demonstrated that several novel miRNAs arose throughout grass carp evolution. Duplication and de novo production were critical strategies for miRNA cluster formation. Duplicates accounted for a smaller fraction of the expansion in the grass carp miRNA than de novo creation. Clustered miRNAs are more conserved and change slower, whereas unique miRNAs usually have high evolution rates and low expression levels. The expression level of miRNA expression in clusters is strongly correlated. CONCLUSIONS: This study examines the genomic distribution, evolutionary background, and expression regulation of grass carp miRNAs. Our findings provide novel insights into the genesis and development of miRNA clusters in teleost.


Assuntos
Carpas , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Carpas/genética , Carpas/metabolismo , Genômica , Análise por Conglomerados
4.
Fish Shellfish Immunol ; 138: 108812, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172750

RESUMO

miRNAs play a key role in the autophagy process. In recent years, the emerging role of autophagy in regulating immune response has attracted increasing attention. Since then, specific miRNAs have also been found to play an immune function indirectly by modulating autophagy as well. This study proved that miR-23a could downregulate grass carp autophagy simultaneously by targeting ATG3 and ATG12. Besides, both ATG3 and ATG12 mRNA levels were increased in kidney and intestine after being infected by Aeromonas hydrophila; yet almost at the same time, miR-23a was decreased. Besides, we illustrated that grass carp miR-23a could affect antimicrobial capacity, proliferation, migration, and antiapoptotic abilities of CIK cells. These results indicate that miR-23a was related to grass carp autophagy and plays an important role in antimicrobial immunity through targeting ATG3 and ATG12, which provides important information on autophagy-related miRNAs about the defense and immune mechanisms against pathogens in teleost.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , MicroRNAs , Animais , Resistência à Doença , Imunidade Inata/genética , Carpas/genética , Proteínas de Peixes/genética , MicroRNAs/genética , Autofagia , Aeromonas hydrophila/fisiologia , Infecções por Bactérias Gram-Negativas/veterinária
5.
Fish Shellfish Immunol ; 142: 109124, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37777097

RESUMO

MicroRNAs (miRNAs) are integral to many biological functions, including autophagy, a process recently proven to be closely linked to innate immunity. In this study, we present findings on miR-22a, a teleost homolog of mammalian miR-22, illustrating its capacity to target the autophagy adaptor p62, subsequently inducing downregulation at both mRNA and protein levels. Utilizing Western blot analyses, we demonstrated that miR-22a inhibits the autophagy flux of CIK cells, correlated with an elevated presence of LC3 II. Additionally, the overexpression of miR-22a resulted in the suppression of NF-κB signaling, leading to reduced cellar antimicrobial abilities and increased apoptosis. These findings provide novel insights into the role of miR-22a as an autophagy-related miRNA and its immune mechanisms against pathogens via p62 in teleost, enriching our understanding of the interplay between autophagy and innate immunity.


Assuntos
Carpas , Doenças dos Peixes , MicroRNAs , Animais , Resistência à Doença , Proteína Sequestossoma-1/metabolismo , Carpas/genética , Carpas/metabolismo , Imunidade Inata/genética , MicroRNAs/genética , Autofagia , Proteínas de Peixes , Mamíferos/metabolismo
6.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894840

RESUMO

Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Senescência Celular/fisiologia , Aterosclerose/metabolismo , Estresse Oxidativo , Transdução de Sinais
7.
Gerontology ; 68(1): 8-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33915544

RESUMO

INTRODUCTION: Frailty has gained increasing attention as it is by far the most prevalent geriatric condition amongst older patients which heavily impacts chronic health status. However, the relationship between frailty and adverse health outcomes in China is far from clear. This study explored the relation between frailty and a panel of adverse health outcomes. METHODS: We performed a multicentre cohort study of older inpatients at 6 large hospitals in China, with two-stage cluster sampling, from October 2018 to April 2019. Frailty was measured according to the FRAIL scale and categorized into robust, pre-frail, and frail. A multivariable logistic regression model and multilevel multivariable negative binomial regression model were used to analyse the relationship between frailty and adverse outcomes. Outcomes were length of hospitalization, as well as falls, readmission, and mortality at 30 and 90 days after enrolment. All regression models were adjusted for age, sex, BMI, surgery, and hospital ward. RESULTS: We included 9,996 inpatients (median age 72 years and 57.8% male). The overall mortality at 30 and 90 days was 1.23 and 1.88%, respectively. At 30 days, frailty was an independent predictor of falls (odds ratio [OR] 3.19; 95% CI 1.59-6.38), readmission (OR 1.45; 95% CI 1.25-1.67), and mortality (OR 3.54; 95% confidence interval [CI] 2.10-5.96), adjusted for age, sex, BMI, surgery, and hospital ward clustering effect. At 90 days, frailty had a strong predictive effect on falls (OR 2.10; 95% CI 1.09-4.01), readmission (OR 1.38; 95% CI 1.21-1.57), and mortality (OR 6.50; 95% CI 4.00-7.97), adjusted for age, sex, BMI, surgery, and hospital ward clustering effect. There seemed to be a dose-response association between frailty categories and fall or mortality, except for readmission. CONCLUSIONS: Frailty is closely related to falls, readmission, and mortality at 30 or 90 days. Early identification and intervention for frailty amongst older inpatients should be conducted to prevent adverse outcomes.


Assuntos
Fragilidade , Idoso , Estudos de Coortes , Feminino , Idoso Fragilizado , Fragilidade/diagnóstico , Fragilidade/epidemiologia , Avaliação Geriátrica , Hospitais , Humanos , Masculino , Readmissão do Paciente
8.
Ecotoxicol Environ Saf ; 246: 114194, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252513

RESUMO

The potential toxicity of microplastic (MPs) to organisms has attracted extensive attention. However, due to the subacute toxicity of MPs, the biological effect is hard to verify in short-term exposure experiment. Here, by tracking the dynamics of gut microbes, mice model was utilized to evaluate the toxicity of compositional MPs (PE, PET, PP, PS and PVC). After 7 days digestive exposure, the physiological indicators were normal as the control group that the body weight and serum cholesterol levels were insignificant change. Whereas, through histopathological examination, all the treatment groups suffered colon tissue damage, among which PS had the most inflammatory cells. Moreover, the high-throughput sequencing results revealed great variation of intestinal flora in treated mice. The ratio of Bacteroidetes and Firmicutes in PE, PET and PP treatment groups heighten, and the relative abundance of Ruminococcaceae and Lachnospiraceae increased significantly at family levels. At the genus level, Alistipes bacteria in PS treatment group significantly decreased that is associated with obesity risk. It indicated that MPs induced inflammatory response would further interfere the dynamics of intestinal flora causing health effect in living organisms. This work shed light on MPs toxicity in short-term exposure and supplied research paradigm of MPs health risk assessment.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Camundongos , Animais , Plásticos , Bactérias/genética , Digestão
9.
Mol Med ; 26(1): 55, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517686

RESUMO

BACKGROUND: With the advance of antibiotics and life support therapy, the mortality of sepsis has been decreasing in recent years. However, the incidence of sepsis-associated encephalopathy (SAE), a common complication of sepsis, is still high. There are few effective therapies to treat clinical SAE. We previously found that ethyl pyruvate (EP), a metabolite derivative, is able to effectively inhibit the NLRP3 inflammasome activation. Administration of ethyl pyruvate protects mice against polymicrobial sepsis in cecal ligation and puncture (CLP) model. The aim of present study is to investigate if ethyl pyruvate is able to attenuate SAE. METHODS: After CLP, C57BL/6 mice were intraperitoneally or intrathecally injected with saline or ethyl pyruvate using the sham-operated mice as control. New Object Recognition (NOR) and Morris Water Maze (MWM) were conducted to determine the cognitive function. Brain pathology was assessed via immunohistochemistry. To investigate the mechanisms by which ethyl pyruvate prevent SAE, the activation of NLRP3 in the hippocampus and the microglia were determined using western blotting, and cognitive function, microglia activation, and neurogenesis were assessed using WT, Nlrp3-/- and Asc-/- mice in the sublethal CLP model. In addition, Nlrp3-/- and Asc-/- mice treated with saline or ethyl pyruvate were subjected to CLP. RESULTS: Ethyl pyruvate treatment significantly attenuated CLP-induced cognitive decline, microglia activation, and impaired neurogenesis. In addition, EP significantly decreased the NLRP3 level in the hippocampus of the CLP mice, and inhibited the cleavage of IL-1ß induced by NLRP3 inflammsome in microglia. NLRP3 and ASC deficiency demonstrated similar protective effects against SAE. Nlrp3-/- and Asc-/- mice significantly improved cognitive function and brain pathology when compared with WT mice in the CLP models. Moreover, ethyl pyruvate did not have additional effects against SAE in Nlrp3-/- and Asc-/- mice. CONCLUSION: The results demonstrated that ethyl pyruvate confers protection against SAE through inhibiting the NLRP3 inflammasome.


Assuntos
Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias Protetoras/farmacologia , Piruvatos/farmacologia , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/prevenção & controle , Animais , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Injeções Espinhais , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Substâncias Protetoras/administração & dosagem , Piruvatos/administração & dosagem , Encefalopatia Associada a Sepse/diagnóstico , Encefalopatia Associada a Sepse/etiologia
10.
Biochem Biophys Res Commun ; 533(4): 1519-1526, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33158480

RESUMO

Cognitive impairment, acute or long-term, is a common complication in patients with severe bacterial infection. However, the underlying mechanisms are not fully verified and effective medicine is not available in clinics. Interferon gamma (IFNγ) is a pivotal cytokine against infection and is believed to be a tune in homeostasis of cognitive function. Here, we collected blood and cerebrospinal fluid (CF) from human subjects and mice, and found that plasma and CF levels of IFNγ were significantly increased in septic patients and endotoxin-challenged mice when compared with healthy controls. IFNγ signaling was boosted in the hippocampus of mice after a challenge of lipopolysaccharide (LPS), which was accompanied with cognitive impairment and decline of neurogenesis. Deficiency of IFNγ or its receptor (IFNγR) dramatically attenuated microglia-induced A1 astrocytes and consequently restored neurogenesis and cognitive function in endotoxemia mice model. Using primary microglia, astrocytes and neurons, we found that IFNγ remarkably increased LPS-mediated release of TNFα and IL-1α in microglia and consequently induced the transformation of astrocyte to A1 subtype, which ultimately resulted in neuron damage. Thus, IFNγ promotes cognitive impairment in endotoxemia by enhancing microglia-induced A1 astrocytes. Targeting IFNγ would be a novel strategy for preventing or treating cognitive dysfunction in patients with Gram-negative infection.


Assuntos
Astrócitos/fisiologia , Disfunção Cognitiva/fisiopatologia , Endotoxemia/fisiopatologia , Interferon gama/antagonistas & inibidores , Neurogênese/fisiologia , Animais , Astrócitos/patologia , Estudos de Casos e Controles , Células Cultivadas , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Endotoxemia/genética , Endotoxemia/psicologia , Inativação Gênica , Humanos , Interferon gama/deficiência , Interferon gama/genética , Interferon gama/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Microglia/fisiologia , Neurogênese/genética , Terapêutica com RNAi , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Receptores de Interferon/fisiologia , Receptor de Interferon gama
11.
BMC Plant Biol ; 20(1): 101, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32138661

RESUMO

BACKGROUND: Studies have indicated that graphene oxide (GO) could regulated Brassica napus L. root growth via abscisic acid (ABA) and indole-3-acetic acid (IAA). To study the mechanism and interaction between GO and IAA further, B. napus L (Zhongshuang No. 9) seedlings were treated with GO and IAA accordance with a two factor completely randomized design. RESULTS: GO and IAA cotreatment significantly regulated the root length, number of adventitious roots, and contents of IAA, cytokinin (CTK) and ABA. Treatment with 25 mg/L GO alone or IAA (> 0.5 mg/L) inhibited root development. IAA cotreatment enhanced the inhibitory role of GO, and the inhibition was strengthened with increased in IAA concentration. GO treatments caused oxidative stress in the plants. The ABA and CTK contents decreased; however, the IAA and gibberellin (GA) contents first increased but then decreased with increasing IAA concentration when IAA was combined with GO compared with GO alone. The 9-cis-epoxycarotenoid dioxygenase (NCED) transcript level strongly increased when the plants were treated with GO. However, the NCED transcript level and ABA concentration gradually decreased with increasing IAA concentration under GO and IAA cotreatment. GO treatments decreased the transcript abundance of steroid 5-alpha-reductase (DET2) and isochorismate synthase 1 (ICS), which are associated with brassinolide (BR) and salicylic acid (SA) biosynthesis, but increased the transcript abundance of brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1), cam-binding protein 60-like G (CBP60) and calmodulin binding protein-like protein 1, which are associated with BR and SA biosynthesis. Last, GO treatment increased the transcript abundance of 1-aminocyclopropane-1-carboxylic acid synthase 2 (ACS2), which is associated with the ethylene (ETH) pathway. CONCLUSIONS: Treatment with 25 mg/L GO or IAA (> 0.5 mg/L) inhibited root development. However, IAA and GO cotreatment enhanced the inhibitory role of GO, and this inhibition was strengthened with increased IAA concentration. IAA is a key factor in the response of B. napus L to GO and the responses of B. napus to GO and IAA cotreatment involved in multiple pathways, including those involving ABA, IAA, GA, CTK, BR, SA. Specifically, GO and IAA cotreatment affected the GA content in the modulation of B. napus root growth.


Assuntos
Brassica napus/crescimento & desenvolvimento , Grafite/farmacologia , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Brassica napus/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Transdução de Sinais
12.
Reprod Biol Endocrinol ; 18(1): 77, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753034

RESUMO

BACKGROUND/AIMS: Sheep are important livestock with variant ovulation rate and fertility. Dorset sheep is a typical breed with low prolificacy, whereas Small Tail Han sheep with FecB mutation (HanBB) have hyperprolificacy. Our previous studies have revealed the gene expression difference between the ovaries from Dorset and HanBB sheep contributes to the difference of fecundity, however, what leads to these gene expression difference remains unclear. DNA methylation, an important epigenetic process, plays a crucial role in gene expression regulation. METHODS: In the present study, we constructed a methylated DNA immunoprecipitation combined with high throughput sequencing (MeDIP-seq) strategy to investigate the differentially methylated genes between the Dorset and HanBB ovaries. RESULTS: Our findings suggest the genes involved in immune response, branched-chain amino acid metabolism, cell growth and cell junction were differentially methylated in or around the gene body regions. CONCLUSIONS: These findings provide prospective insights on the epigenetic basis of sheep fecundity.


Assuntos
Epigenoma/genética , Estro/genética , Fertilidade/genética , Carneiro Doméstico/genética , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Estro/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genótipo , Tamanho da Ninhada de Vivíparos/genética , Ovário/metabolismo , Gravidez , Ovinos
13.
Int J Nurs Pract ; 25(1): e12699, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30251453

RESUMO

AIMS: This systematic review and meta-analysis aimed to evaluate the effects of cognitive-behavioural therapy in patients with inflammatory bowel diseases. METHODS: Cochrane Library, Web of Science, Pubmed, EMBASE, and CINAHL were searched up to June 2017, as well as grey literature and databases hand searches. Quality assessment, heterogeneity, sensitivity analysis, and publication bias were performed. Stata12.0 software was used for pooled estimates. RESULTS: Seven eligible reports were included in the final analysis. Inflammatory Bowel Disease Questionnaire score was higher in the cognitive-behavioural therapy group than in the control group at the final follow-up in inflammatory bowel disease patients (P = 0.008). There was no statistically significant difference in the Crohn's Disease Activity Index (P = 0.751), Simple Clinical Colitis Activity Index score (P = 0.747), State Anxiety score (P = 0.988), Trait Anxiety score (P = 0.681), and Perceived Stress Questionnaire score (P = 0.936) at the final point of follow-up. A funnel plot showed no publication bias (P = 0.98). CONCLUSION: Cognitive-behavioural therapy appeared to support higher quality of life in inflammatory bowel disease patients compared with a control group at the final follow-up point but had no effect on disease activity, anxiety, or perceived stress in patients with inflammatory bowel disease. Cognitive-behavioural therapy can be an acceptable adjunctive therapy for inflammatory bowel disease patients, but the effect of cognitive-behavioural therapy is limited.


Assuntos
Doenças Inflamatórias Intestinais/terapia , Terapia Cognitivo-Comportamental , Humanos , Doenças Inflamatórias Intestinais/psicologia , Qualidade de Vida
14.
Mol Med ; 24(1): 66, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587103

RESUMO

BACKGROUND: Caspase-11, a cytosolic receptor of bacterial endotoxin (lipopolysaccharide: LPS), mediates immune responses and lethality in endotoxemia and experimental sepsis. However, the upstream pathways that regulate caspase-11 activation in endotoxemia and sepsis are not fully understood. The aim of this study is to test whether TIR-domain-containing adapter-inducing interferon-ß (TRIF) signaling is critical for caspase-11-dependent immune responses and lethality in endotoxemia. METHODS: Mice of indicated genotypes were subjected to endotoxemia or cecum ligation and puncture (CLP) and monitored daily by signs of a moribund state for lethality. Serum interleukin (IL)-1α, IL-1ß, IL-6 and tumor necrosis factor (TNF) were measured by ELISA. Data were analyzed by using student's t-test or one-way ANOVA followed by post-hoc Bonferroni test. Survival data were analyzed by using the log-rank test. RESULTS: Blockade of type 1 interferon signaling or genetic deletion of TRIF or guanylate-binding proteins (GBPs) prevented caspase-11-dependent immune responses, organ injury and lethality in endotoxemia and experimental sepsis. In vitro, deletion of GBPs blocked cytosolic LPS-induced caspase-11 activation in mouse macrophages. CONCLUSIONS: These findings demonstrate that TRIF signaling is required for caspase-11-dependent immune responses and lethality in endotoxemia and sepsis, and provide novel mechanistic insights into how LPS induces caspase-11 activation during bacterial infection.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Caspases/imunologia , Endotoxemia/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Caspases Iniciadoras , Endotoxemia/induzido quimicamente , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Interferon Tipo I/imunologia , Lipopolissacarídeos , Macrófagos Peritoneais/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Cell Physiol Biochem ; 50(6): 2406-2422, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30423578

RESUMO

BACKGROUND/AIMS: Long non-coding RNAs (lncRNAs) can regulate adipogenesis and lipid accumulation. Intramuscular fat deposition appears to vary in different pig breeds, and the regulation mechanism has not yet been fully elucidated at molecular level. Moreover, little is known about the function and profile of lncRNAs in intramuscular fat deposition and metabolism in pig. The aim of this study was thus to explore the regulatory functions of lncRNAs in intramuscular fat deposition. METHODS: In this study, Laiwu (LW) pig and Large White (LY) pig with significant difference in fat deposition were selected for use. RNA-seq technology and bioinformatics methods were used to comparatively analyze the gene expression profiles of intramuscular fat between LW and LY pigs to identify key mRNAs and lncRNAs associated with lipid metabolism and adipogenesis. Real-time fluorescence-based quantitative PCR was applied to verify the expression level of the differentially expressed mRNAs and lncRNAs. RESULTS: A total of 513 mRNAs and 55 lncRNAs were differentially expressed between two pig breeds. By co-expression network construction as well as cis- and trans-regulated target gene analysis, 31 key lncRNAs were identified. Gene Ontology and KEGG pathway analyses revealed that differentially expressed genes and lncRNAs were mainly involved in the biological processes and pathways related to adipogenesis and lipid metabolism. CONCLUSION: XLOC_046142, XLOC_004398 and XLOC_015408 may target MAPKAPK2, NR1D2 and AKR1C4, respectively, and play critical regulatory roles in intramuscular adipogenesis and lipid accumulation in pig. XLOC_064871 and XLOC_011001 may play a role in lipid metabolism-related disease via regulating TRIB3 and BRCA1. This study provides a valuable resource for lncRNA study and improves our understanding of the biological roles of lipid metabolism- related genes and molecular mechanism of intramuscular fat metabolism and deposition.


Assuntos
Genoma , Metabolismo dos Lipídeos/genética , Fibras Musculares Esqueléticas/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Adipogenia/genética , Animais , Feminino , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Suínos , Transcriptoma
16.
Cell Physiol Biochem ; 47(6): 2458-2470, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29990990

RESUMO

BACKGROUND/AIMS: CircRNAs, as miRNA sponges, participate in many important biological processes. However, it remains unclear whether circRNAs can regulate lipid metabolism. This paper aims to study the molecular mechanism of fat deposition and provide useful information for the prevention and therapy of lipid metabolism-related diseases. METHODS: CircRNA sequencing was performed to investigate the expression of circRNAs in the subcutaneous adipose tissues of Large White pig and Laiwu pig. The expression of circRNAs was further validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, circRNA-microRNAs (miRNA)-mRNA interaction networks were constructed using bioinformatics tools. In addition, GO and KEGG enrichment analyses were performed for the target genes of circRNAs. RESULTS: In the subcutaneous adipose tissue of Laiwu pig, 70 up-regulated circRNAs and 205 down-regulated circRNAs were identified. Two circRNAs (up-regulated circRNA_26852 and down-regulated circRNA_11897), the expressions of which were confirmed by qRT-PCR, were selected for subsequent analysis. CircRNA-miRNA-mRNA interaction networks were constructed for circRNA_26852 and its target genes as well as circRNA_11897 and its target genes. GO and KEGG enrichment analyses reveal that the target genes of circRNA_26852 and circRNA_11897 are enriched in pathways related to adipocyte differentiation and lipid metabolism, as well as in disease-related pathways. CONCLUSIONS: In this study, circRNA sequencing and bioinformatics technique were used to analyze, for the first time, the expression of circRNAs in the subcutaneous adipose tissues of Large White pig and Laiwu pig. It is inferred that circRNAs might regulate adipogenic differentiation and lipid metabolism. The results provide a theoretical basis for further study on fat deposition mechanism and provide potential therapy targets for metabolism-related diseases.


Assuntos
Tecido Adiposo/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , RNA não Traduzido/metabolismo , Doenças dos Suínos/metabolismo , Suínos/metabolismo , Tecido Adiposo/patologia , Animais , Biomarcadores/metabolismo , Transtornos do Metabolismo dos Lipídeos/genética , Transtornos do Metabolismo dos Lipídeos/patologia , Transtornos do Metabolismo dos Lipídeos/veterinária , RNA não Traduzido/genética , Suínos/genética , Doenças dos Suínos/genética , Doenças dos Suínos/patologia
17.
J Nanosci Nanotechnol ; 18(12): 8345-8351, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189958

RESUMO

Researchers have shown that graphene oxide has a significant effect on plant and pathogen growth and development. To better understand the effect of graphene oxide on the resistance of Brassica napus L. to Sclerotinia sclerotiorum, Zhongshuang 11 was used to evaluate changes in the morphology and physiology after graphene oxide treatment. Detached leaf inoculation was used to detect S. sclerotiorum infection in rapeseed. The results indicated that treatment with a low concentration of graphene oxide had no significant effect on the growth of B. napus "Zhongshuang 11." Graphene oxide inhibited S. sclerotiorum in PDA medium. Treatment with 15 mg/L graphene oxide for 8-24 h in seeds and 8-16 h in seedlings suppressed S. sclerotiorum growth compared to the control samples. These results demonstrate that a low concentration of graphene oxide did not harm the growth of B. napus but did enhance its resistance to S. sclerotiorum.


Assuntos
Ascomicetos , Brassica napus , Ascomicetos/patogenicidade , Brassica napus/crescimento & desenvolvimento , Brassica napus/microbiologia , Grafite , Doenças das Plantas/prevenção & controle , Proteínas de Plantas
18.
J Nanosci Nanotechnol ; 16(4): 4216-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451789

RESUMO

Graphene oxide is a new kind of nanomaterial. The graphene oxide was prepared and its quality detected by atomic force microscopy (AFM) and transmission electron microscopy (TEM), for better understanding of effects of the nanomaterial on plants. Wild type. (WT) tomato (Solanum lycopersicum) germplasm 'New Yorker' and corresponding transgenic plants (Prd29A::LeNCED1) were treated with prepared graphene oxide. 9-cis-epoxycarotenoid dioxygenase (NCED) is a key gene for ABA biosynthesis and overexpression of the NCED resulted in ABA accumulation and higher drought tolerance. Seminal root length in the WT tomato was longer than that in the control samples when the seedlings were treated with 20 mg/L graphene oxide for 15 days. In contrast, the same treatment resulted in shorter seminal root length in the transgenic plants compared with control samples. The graphene oxide treatments led to lower Superoxide Dismutase (SOD), Peroxidase (POD), Catalase (CAT) activity and Malondialdehyde (MDA) content in the WT and transgenic plants. 20 mg/L graphene oxide treatment also affected the transcript levels of IAA7, IAA4 and IAA10 but the effect on the wild type and corresponding transgenic plants was different. IAA4 transcription level decreased both in the WT and Prd29A::LeNCED1 transgenic plants while the IAA7 transcription level decreased in the transgenic plants and increased in the WT tomato. The IAA10 transcription level decreased in the WT tomato and increased in the Prd29A::LeNCED1 transgenic plants. Graphene oxide treatments resulted in higher transcription level of ABCG25 and ABCG40 in the WT plants but had no significant effect on transgenic plants. The transcription level of NCED in the WT and Prd29A::LeNCED1 transgenic plants treated with graphene oxide increased significantly, however, it was higher in the transgenic plants than in the WT tomato after 15 d treatment, indicating that the graphene oxide activated the rd29A promoter as does drought and salt. The HD-ZIP transcription level only decreased significantly in the treated Prd29A::LeNCED1 transgenic plants. All these results suggested that there was a crosstalk between ABA and graphene oxide and the graphene oxide affected plant growth through the ABA and IAA pathway.


Assuntos
Ácido Abscísico/metabolismo , Grafite/administração & dosagem , Ácidos Indolacéticos/metabolismo , Nanopartículas/administração & dosagem , Raízes de Plantas/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Grafite/química , Solanum lycopersicum/efeitos dos fármacos , Teste de Materiais , Nanopartículas/química , Óxidos/administração & dosagem , Óxidos/química , Raízes de Plantas/efeitos dos fármacos
19.
Plant Physiol Biochem ; 207: 108293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181638

RESUMO

Drought stress is a major environmental challenge that poses considerable threats to crop survival and growth. Previous research has indicated anthocyanins play a crucial role in alleviating oxidative damage, photoprotection, membrane stabilization, and water retention under drought stress. However, the presence of MYBL2 (MYELOBBLASTOSIS LIKE 2), an R3-MYB transcription factor (TF) which known to suppress anthocyanin biosynthesis. In this study, four BnMYBL2 members were cloned from Brassica napus L, and BnMYBL2-1 was overexpressed in Triticum aestivum L (No BnMYBL2 homologous gene was detected in wheat). Subsequently, the transgenic wheat lines were treated with drought, ABA and anthocyanin. Results showed that transgenic lines exhibited greater drought tolerance compared to the wild-type (WT), characterized by improved leaf water content (LWC), elevated levels of soluble sugars and chlorophyll, and increased antioxidant enzyme activity. Notably, transgenic lines also exhibited significant upregulation in abscisic acid (ABA) content, along with the transcriptional levels of key enzymes involved in ABA signalling under drought. Results also demonstrated that BnMYBL2-1 promoted the accumulation of ABA and anthocyanins in wheat. Overall, the study highlights the positive role of BnMYBL2-1 in enhancing crop drought tolerance through ABA signalling and establishes its close association with anthocyanin biosynthesis. These findings offer valuable insights for the development of drought-resistant crop varieties and enhance the understanding of the molecular mechanisms underlying plant responses to drought stress.


Assuntos
Ácido Abscísico , Antocianinas , Ácido Abscísico/metabolismo , Resistência à Seca , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Água/metabolismo , Secas , Regulação da Expressão Gênica de Plantas
20.
Chemosphere ; 360: 142428, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797211

RESUMO

In recent years, the concentrations of cadmium (Cd) and diclofenac (DCF) in water have frequently exceeded the standard; however, the toxic effects of these two pollutants on grass carp under single and combined exposure are unknown. In this study, the concentrations of pollutants in different tissues were detected, and the toxicities of the two pollutants to grass carp under different exposure conditions were compared based on growth traits, biochemical responses, gut microbiome, and transcriptomes. Based on these findings, the brain showed the lowest levels of Cd and DCF accumulation. Oxidative stress and pathological damage were observed in the brain and intestines. Changes in the structure and abundance of the gut microflora affect the synthesis of neurotransmitters, such as GABA and steroids. Differentially expressed genes in the brain were enriched in circadian rhythm functions. The expression of PER, CLOCK,1L-1ß, 1L-17, and other genes are related to the abundance of Akkermansia, which indicates that the disorder of gut microflora will affect the normal circadian rhythm of the brain. All indices in the recovery group showed an increasing trend. Overall, the toxicity of Cd and DCF showed antagonism, and a single exposure had a stronger effect on gut microorganisms and circadian rhythm, which provided a scientific basis for exploring the comprehensive effects of different pollutants.


Assuntos
Cádmio , Carpas , Diclofenaco , Microbioma Gastrointestinal , Transcriptoma , Poluentes Químicos da Água , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Diclofenaco/toxicidade , Transcriptoma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa