Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 769
Filtrar
1.
Nat Immunol ; 25(8): 1383-1394, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942990

RESUMO

The immunological mechanisms underlying chronic colitis are poorly understood. T follicular helper (TFH) cells are critical in helping B cells during germinal center reactions. In a T cell transfer colitis model, a lymphoid structure composed of mature dendritic cells (DCs) and TFH cells was found within T cell zones of colonic lymphoid follicles. TFH cells were required for mature DC accumulation, the formation of DC-T cell clusters and colitis development. Moreover, DCs promoted TFH cell differentiation, contributing to colitis development. A lineage-tracing analysis showed that, following migration to the lamina propria, TFH cells transdifferentiated into long-lived pathogenic TH1 cells, promoting colitis development. Our findings have therefore demonstrated the reciprocal regulation of TFH cells and DCs in colonic lymphoid follicles, which is critical in chronic colitis pathogenesis.


Assuntos
Diferenciação Celular , Colite , Células Dendríticas , Células T Auxiliares Foliculares , Animais , Células Dendríticas/imunologia , Colite/imunologia , Colite/patologia , Células T Auxiliares Foliculares/imunologia , Camundongos , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Células Th1/imunologia , Colo/imunologia , Colo/patologia , Camundongos Knockout , Centro Germinativo/imunologia , Camundongos Transgênicos
2.
Nature ; 633(8028): 77-82, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39198652

RESUMO

Numerous correlated many-body phases, both conventional and exotic, have been reported in magic-angle twisted bilayer graphene (MATBG)1-24. However, the dynamics associated with these correlated states, crucial for understanding the underlying physics, remain unexplored. Here we combine exciton sensing and optical pump-probe spectroscopy to investigate the dynamics of isospin orders in MATBG with WSe2 substrate across the entire flat band, achieving sub-picosecond resolution. We observe remarkably slow isospin dynamics in a broad filling range around ν = 2 and between ν = -3 and -2, with lifetimes of up to 300 ps that decouple from the much faster cooling of electronic temperature (about 10 ps). This non-thermal behaviour demonstrates the presence of abnormally long-lived modes in the isospin degrees of freedom. This observation, not anticipated by theory, implies the existence of long-range propagating collective modes, strong isospin fluctuations and memory effects and is probably associated with an intervalley coherent or incommensurate Kekulé spiral ground state. We further demonstrate non-equilibrium control of the isospin orders previously found around integer fillings. Specifically, through ultrafast manipulation, it can be transiently shifted away from integer fillings. Our study demonstrates a unique probe of collective excitations in MATBG and paves the way for actively controlling non-equilibrium phenomena in moiré systems.

3.
Nature ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353570

RESUMO

Back contact silicon solar cells, valued for their aesthetic appeal by removing grid lines on the sunny side, find applications in buildings, vehicles and aircrafts, enabling self-power generation without compromising appearance1-3. Patterning techniques arrange contacts on the shaded side of the silicon wafer, offering benefits for light incidence as well. However, the patterning process complicates production and causes power loss. Here we employ lasers to streamline back contact solar cell fabrication and enhance power conversion efficiency. Our approach produces the first silicon solar cell to exceed 27% efficiency. Hydrogenated amorphous silicon layers are deposited on the wafer for surface passivation and collection of light-generated carriers. A dense passivating contact, diverging from conventional technology practice, is developed. Pulsed picosecond lasers at different wavelengths are used to create back contact patterns. The developed approach is a streamlined process for producing high-performance back contact silicon solar cells, with a total effective processing time of about one-third that of emerging mainstream technology. To meet terawatt demand, we develop rare indium-less cells at 26.5% efficiency and precious silver-free cells at 26.2% efficiency. The integration of solar solutions in buildings and transportation is poised to expand with these technological advancements.

4.
EMBO J ; 42(24): e114889, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953642

RESUMO

Ceramide synthases (CerS) catalyze ceramide formation via N-acylation of a sphingoid base with a fatty acyl-CoA and are attractive drug targets for treating numerous metabolic diseases and cancers. Here, we present the cryo-EM structure of a yeast CerS complex, consisting of a catalytic Lac1 subunit and a regulatory Lip1 subunit, in complex with C26-CoA substrate. The CerS holoenzyme exists as a dimer of Lac1-Lip1 heterodimers. Lac1 contains a hydrophilic reaction chamber and a hydrophobic tunnel for binding the CoA moiety and C26-acyl chain of C26-CoA, respectively. Lip1 interacts with both the transmembrane region and the last luminal loop of Lac1 to maintain the proper acyl chain binding tunnel. A lateral opening on Lac1 serves as a potential entrance for the sphingoid base substrate. Our findings provide a template for understanding the working mechanism of eukaryotic ceramide synthases and may facilitate the development of therapeutic CerS modulators.


Assuntos
Ceramidas , Proteínas de Saccharomyces cerevisiae , Ceramidas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Oxirredutases/metabolismo , Proteínas de Membrana/metabolismo
5.
Nature ; 598(7881): 434-438, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34469942

RESUMO

To access superconductivity via the electric field effect in a clean, two-dimensional device is a central goal of nanoelectronics. Recently, superconductivity has been realized in graphene moiré heterostructures1-4; however, many of these structures are not mechanically stable, and experiments show signatures of strong disorder. Here we report the observation of superconductivity-manifesting as low or vanishing resistivity at sub-kelvin temperatures-in crystalline rhombohedral trilayer graphene5,6, a structurally metastable carbon allotrope. Superconductivity occurs in two distinct gate-tuned regions (SC1 and SC2), and is deep in the clean limit defined by the ratio of mean free path and superconducting coherence length. Mapping of the normal state Fermi surfaces by quantum oscillations reveals that both superconductors emerge from an annular Fermi sea, and are proximal to an isospin-symmetry-breaking transition where the Fermi surface degeneracy changes7. SC1 emerges from a paramagnetic normal state, whereas SC2 emerges from a spin-polarized, valley-unpolarized half-metal17 and violates the Pauli limit for in-plane magnetic fields by at least one order of magnitude8,9. We discuss our results in view of several mechanisms, including conventional phonon-mediated pairing10,11, pairing due to fluctuations of the proximal isospin order12, and intrinsic instabilities of the annular Fermi liquid13,14. Our observation of superconductivity in a clean and structurally simple two-dimensional metal provides a model system to test competing theoretical models of superconductivity without the complication of modelling disorder, while enabling new classes of field-effect controlled electronic devices based on correlated electron phenomena and ballistic electron transport.

6.
Nature ; 598(7881): 429-433, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34469943

RESUMO

Ferromagnetism is most common in transition metal compounds where electrons occupy highly localized d orbitals. However, ferromagnetic order may also arise in low-density two-dimensional electron systems1-5. Here we show that gate-tuned van Hove singularities in rhombohedral trilayer graphene6 drive spontaneous ferromagnetic polarization of the electron system into one or more spin and valley flavours. Using capacitance and transport measurements, we observe a cascade of transitions tuned to the density and electronic displacement field between phases in which quantum oscillations have fourfold, twofold or onefold degeneracy, associated with a spin- and valley-degenerate normal metal, spin-polarized 'half-metal', and spin- and valley-polarized 'quarter-metal', respectively. For electron doping, the salient features of the data are well captured by a phenomenological Stoner model7 that includes valley-anisotropic interactions. For hole filling, we observe a richer phase diagram featuring a delicate interplay of broken symmetries and transitions in the Fermi surface topology. Finally, we introduce a moiré superlattice using a rotationally aligned hexagonal boron nitride substrate5,8. Remarkably, we find that the isospin order is only weakly perturbed, with the moiré potential catalysing the formation of topologically nontrivial gapped states whenever itinerant half- or quarter-metal states occur at half- or quarter-superlattice band filling. Our results show that rhombohedral graphene is an ideal platform for well-controlled tests of many-body theory, and reveal magnetism in moiré materials4,5,9,10 to be fundamentally itinerant in nature.

7.
Proc Natl Acad Sci U S A ; 121(23): e2322359121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805286

RESUMO

Rearranged during transfection (RET) rearrangement oncoprotein-mediated Ras/MAPK signaling cascade is constitutively activated in cancers. Here, we demonstrate a unique signal niche. The niche is a ternary complex based on the chimeric RET liquid-liquid phase separation. The complex comprises the rearranged kinase (RET fusion); the adaptor (GRB2), and the effector (SHC1). Together, they orchestrate the Ras/MAPK signal cascade, which is dependent on tyrosine kinase. CCDC6-RET fusion undergoes LLPS requiring its kinase domain and its fusion partner. The CCDC6-RET fusion LLPS promotes the autophosphorylation of RET fusion, with enhanced kinase activity, which is necessary for the formation of the signaling niche. Within the signal niche, the interactions among the constituent components are reinforced, and the signal transduction efficiency is amplified. The specific RET fusion-related signal niche elucidates the mechanism of the constitutive activation of the Ras/MAPK signaling pathway. Beyond just focusing on RET fusion itself, exploration of the ternary complex potentially unveils a promising avenue for devising therapeutic strategies aimed at treating RET fusion-driven diseases.


Assuntos
Proteína Adaptadora GRB2 , Sistema de Sinalização das MAP Quinases , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-ret , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Proteínas ras , Humanos , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/genética , Células HEK293 , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Fosforilação , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas ras/metabolismo , Proteínas ras/genética , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética
8.
Proc Natl Acad Sci U S A ; 120(23): e2300453120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252960

RESUMO

MuSK is a receptor tyrosine kinase (RTK) that plays essential roles in the formation and maintenance of the neuromuscular junction. Distinct from most members of RTK family, MuSK activation requires not only its cognate ligand agrin but also its coreceptors LRP4. However, how agrin and LRP4 coactivate MuSK remains unclear. Here, we report the cryo-EM structure of the extracellular ternary complex of agrin/LRP4/MuSK in a stoichiometry of 1:1:1. This structure reveals that arc-shaped LRP4 simultaneously recruits both agrin and MuSK to its central cavity, thereby promoting a direct interaction between agrin and MuSK. Our cryo-EM analyses therefore uncover the assembly mechanism of agrin/LRP4/MuSK signaling complex and reveal how MuSK receptor is activated by concurrent binding of agrin and LRP4.


Assuntos
Agrina , Receptores Colinérgicos , Receptores Colinérgicos/metabolismo , Agrina/química , Agrina/metabolismo , Proteínas Relacionadas a Receptor de LDL/química , Transdução de Sinais , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
9.
Plant Physiol ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222369

RESUMO

Sphingolipid homeostatic regulation is important for balancing plant life and death. Plant cells finely tune sphingolipid biosynthesis to ensure sufficient levels to support growth through their basal functions as major components of endomembranes and the plasma membrane. Conversely, accumulation of sphingolipid biosynthetic intermediates, long-chain bases (LCBs) and ceramides, is associated with programmed cell death (PCD). Limiting these apoptotic intermediates is important for cell viability; while overriding homeostatic regulation permits cells to generate elevated LCBs and ceramides to respond to pathogens to elicit the hypersensitive response in plant immunity. Key to sphingolipid homeostasis is serine palmitoyltransferase (SPT), an ER-associated, multi-subunit enzyme catalyzing the first step in the biosynthesis of LCBs, the defining feature of sphingolipids. Across eukaryotes, SPT interaction with its negative regulator ORM is critical for sphingolipid biosynthesis. The recent cryo-electron microscopy structure of the Arabidopsis SPT complex indicates that ceramides bind ORMs to competitively inhibit SPT activity. This system provides a sensor for intracellular ceramide concentrations for sphingolipid homeostatic regulation. Combining the newly elucidated Arabidopsis SPT structure and mutant characterization, we present a model for the role of the two functionally divergent Arabidopsis ceramide synthase classes to produce ceramides that form repressive (trihydroxy LCB-ceramides) or non-repressive (dihydroxy LCB-ceramides) ORM interactions to influence SPT activity. We describe how sphingolipid biosynthesis is regulated by the interplay of ceramide synthases with ORM-SPT when "enough is enough" and override homeostatic suppression when "enough is not enough" to respond to environmental stimuli such as microbial pathogen attack.

10.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131941

RESUMO

Lysine-specific demethylase 6A (KDM6A), also named UTX, is frequently mutated in bladder cancer (BCa). Although known as a tumor suppressor, KDM6A's therapeutic potential in the metastasis of BCa remains elusive. It also remains difficult to fulfill the effective up-regulation of KDM6A levels in bladder tumor tissues in situ to verify its potential in treating BCa metastasis. Here, we report a mucoadhesive messenger RNA (mRNA) nanoparticle (NP) strategy for the intravesical delivery of KDM6A-mRNA in mice bearing orthotopic Kdm6a-null BCa and show evidence of KDM6A's therapeutic potential in inhibiting the metastasis of BCa. Through this mucoadhesive mRNA NP strategy, the exposure of KDM6A-mRNA to the in situ BCa tumors can be greatly prolonged for effective expression, and the penetration can be also enhanced by adhering to the bladder for sustained delivery. This mRNA NP strategy is also demonstrated to be effective for combination cancer therapy with other clinically approved drugs (e.g., elemene), which could further enhance therapeutic outcomes. Our findings not only report intravesical delivery of mRNA via a mucoadhesive mRNA NP strategy but also provide the proof-of-concept for the usefulness of these mRNA NPs as tools in both mechanistic understanding and translational study of bladder-related diseases.


Assuntos
Histona Desmetilases/farmacologia , Nanopartículas/química , Metástase Neoplásica/prevenção & controle , RNA Mensageiro/farmacologia , Adesividade , Administração Intravesical , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Terapia Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Camundongos , Camundongos Nus , Mucosa , Neoplasias Experimentais/terapia , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , Neoplasias da Bexiga Urinária
11.
Med Res Rev ; 44(2): 539-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37661373

RESUMO

Over the past decade, colorectal cancer has reported a higher incidence in younger adults and a lower mortality rate. Recently, the influence of the intestinal flora in the initiation, progression, and treatment of colorectal cancer has been extensively studied, as well as their positive therapeutic impact on inflammation and the cancer microenvironment. Historically, traditional Chinese medicine (TCM) has been widely used in the treatment of colorectal cancer via promoted cancer cell apoptosis, inhibited cancer metastasis, and reduced drug resistance and side effects. The present research is more on the effect of either herbal medicine or intestinal flora on colorectal cancer. The interactions between TCM and intestinal flora are bidirectional and the combined impacts of TCM and gut microbiota in the treatment of colon cancer should not be neglected. Therefore, this review discusses the role of intestinal bacteria in the progression and treatment of colorectal cancer by inhibiting carcinogenesis, participating in therapy, and assisting in healing. Then the complex anticolon cancer effects of different kinds of TCM monomers, TCM drug pairs, and traditional Chinese prescriptions embodied in apoptosis, metastasis, immune suppression, and drug resistance are summarized separately. In addition, the interaction between TCM and intestinal flora and the combined effect on cancer treatment were analyzed. This review provides a mechanistic reference for the application of TCM and intestinal flora in the clinical treatment of colorectal cancer and paves the way for the combined development and application of microbiome and TCM.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Plantas Medicinais , Adulto , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Microambiente Tumoral
12.
J Cell Mol Med ; 28(3): e18100, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38189641

RESUMO

IL12B encodes the shared p40 subunit (IL-12p40) of IL-12 and IL-23, which have diverse immune functions and are closely related to the occurrence and development of atherosclerosis (AS). However, the exact role of IL12B in coronary heart disease (CHD) was still unknown. A case-control association analysis was performed between five single nucleotide polymorphisms (SNPs) of IL12B (rs1003199, rs3212219, rs2569254, rs2853694 and rs3212227) and CHD in Chinese Han population (1824 patients with CHD vs. 2784 controls). Logistic regression analyses were used to study the relationships between SNPs and CHD, while multiple linear regression analyses were used to test the association between the SNP and the severity of CHD. In addition, the plasma IL12B concentration of CHD patients were detected by ELISA. We detected a significant association between one of the SNPs, rs2853694-G and CHD (padj = 2.075 × 10-5 , OR, 0.773 [95% CI, 0.686-0.870]). Stratified analysis showed that rs2853694 was associated with CHD in both male and female populations and was significantly associated with both early- and late-onset CHD. In addition, rs2853694 is also related to the different types of CHD including clinical-CHD and anatomical-CHD. Moreover, there are significant differences in serum IL12B concentrations between rs2853694-TT carriers and rs2853694-GT carriers in CHD patients (p = 0.010). A common variant of IL12B was found significantly associated with CHD and its subgroups. As a shared subunit of IL-12 and IL-23, IL-12p40 may play a key role in IL-12/IL-23 axis mediated AS, which is expected to be an effective therapeutic target for CHD.


Assuntos
Aterosclerose , Doença das Coronárias , Humanos , Masculino , Feminino , Predisposição Genética para Doença , Subunidade p40 da Interleucina-12 , Interleucina-12 , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Genótipo
13.
Mol Cancer ; 23(1): 229, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39395984

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most prevalent malignancies in males worldwide. Increasing research attention has focused on the PCa microenvironment, which plays a crucial role in tumor progression and therapy resistance. This review aims to provide a comprehensive overview of the key components of the PCa microenvironment, including immune cells, vascular systems, stromal cells, and microbiota, and explore their implications for diagnosis and treatment. METHODS: Keywords such as "prostate cancer", "tumor microenvironment", "immune cells", "vascular system", "stromal cells", and "microbiota" were used for literature retrieval through online databases including PubMed and Web of Science. Studies related to the PCa microenvironment were selected, with a particular focus on those discussing the roles of immune cells, vascular systems, stromal cells, and microbiota in the development, progression, and treatment of PCa. The selection criteria prioritized peer-reviewed articles published in the last five years, aiming to summarize and analyze the latest research advancements and clinical relevance regarding the PCa microenvironment. RESULTS: The PCa microenvironment is highly complex and dynamic, with immune cells contributing to immunosuppressive conditions, stromal cells promoting tumor growth, and microbiota potentially affecting androgen metabolism. Vascular systems support angiogenesis, which fosters tumor expansion. Understanding these components offers insight into the mechanisms driving PCa progression and opens avenues for novel therapeutic strategies targeting the tumor microenvironment. CONCLUSIONS: A deeper understanding of the PCa microenvironment is crucial for advancing diagnostic techniques and developing precision therapies. This review highlights the potential of targeting the microenvironment to improve patient outcomes, emphasizing its significance in the broader context of PCa research and treatment innovation.


Assuntos
Microbiota , Neoplasias da Próstata , Células Estromais , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Células Estromais/metabolismo , Microbiota/imunologia , Masculino , Animais , Neovascularização Patológica/imunologia , Suscetibilidade a Doenças
14.
Small ; : e2407197, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358955

RESUMO

The elimination of localized cancer pain remains a globally neglected challenge. A potential solution lies in combining gas therapy with targeted interventional ablation therapy. In this study, HA-As2S3 nanoparticles with controlled sizes are synthesized using different molecular weights of sodium hyaluronate (HA) as a supramolecular scaffold. Initially, HA co-assembles with arsenic ions (As3+) via coordinate bonds, forming HA-As3+ scaffold intermediates. These intermediates, varying in size, then react with sulfur ions to produce size-controlled HA-As2S3 particles. This approach demonstrates that different molecular weights of HA enable precise control over the particle size of arsenic sulfide, offering a straightforward and environmentally friendly method for synthesizing metal sulfide particles. In an acidic environment, HA-As2S3 nanoparticles release hydrogen sulfide(H2S) gas and As3+. The released As3+ directly damage tumor mitochondria, leading to substantial reactive oxygen species (ROS) production from mitochondria. Concurrently, the H2S gas inhibits the activity of catalase (CAT) and complex IV, preventing the beneficial decomposition of ROS and disrupting electron transfer in the mitochondrial respiratory chain. Consequently, it is found that H2S gas significantly enhances the mitochondrial damage induced by arsenic nanodrugs, effectively killing local tumors and ultimately eliminating cancer pain in mice.

15.
Small ; : e2404018, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133083

RESUMO

The designed and ordered co-immobilization of multiple enzymes for vectorial biocatalysis is challenging. Here, a combination of protein phase separation and bioorthogonal linking is used to generate a zeolitic imidazole framework (ZIF-8) containing co-immobilized enzymes. Zn2+ ions induce the clustering of minimal protein modules, such as 6-His tag, proline-rich motif (PRM) and SRC homology 3 (SH3) domains, and allow for phase separation of the coupled aldoketoreductase (AKR) and alcohol dehydrogenase (ADH) at low concentrations. This is achieved by fusing SpyCatcher and PRM-SH3-6His peptide fragments to the C and N termini of AKR, respectively, and the SpyTag to ADH. Addition of 2-methylimidazole results in droplet formation and enables in situ spatial embedding the recombinant AKR and ADH to generate the cascade biocalysis system encapsulated in ZIF-8 (AAE@ZIF). In synthesizing (S)-1-(2-chlorophenyl) ethanol, ater 6 cycles, the yield can still reach 91%, with 99.99% enantiomeric excess (ee) value for each cycle. However, the yield could only reach 72.9% when traditionally encapsulated AKR and ADH in ZIF-8 are used. Thus, this work demonstrates that a combination of protein phase separation and bio-orthogonal linking enables the in situ creation of a stable and spatially organized bi-enzyme system with enhanced channeling effects in ZIF-8.

16.
Plant Cell Environ ; 47(5): 1852-1864, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334305

RESUMO

Zinc (Zn) deficiency not only impairs plant growth and development but also has negative effects on human health. Rice (Oryza Sativa L.) is a staple food for over half of the global population, yet the regulation of Zn deficiency response in rice remains largely unknown. In this study, we provide evidence that two F-group bZIP transcription factors, OsbZIP48/50, play a crucial role in Zn deficiency response. Mutations in OsbZIP48/50 result in impaired growth and reduced Zn/Fe/Cu content under Zn deficiency conditions. The N-terminus of OsbZIP48/OsbZIP50 contains two Zn sensor motifs (ZSMs), deletion or mutation of these ZSMs leads to increased nuclear localization. Both OsbZIP48 and OsbZIP50 exhibit transcriptional activation activity, and the upregulation of 1117 genes involved in metal uptake and other processes by Zn deficiency is diminished in the OsbZIP48/50 double mutant. Both OsbZIP48 and OsbZIP50 bind to the promoter of OsZIP10 and activate the ZDRE cis-element. Amino acid substitution mutation of the ZSM domain of OsbZIP48 in OsbZIP50 mutant background increases the content of Zn/Fe/Cu in brown rice seeds and leaves. Therefore, this study demonstrates that OsbZIP48/50 play a crucial role in regulating metal homoeostasis and identifies their downstream genes involved in the Zn deficiency response in rice.


Assuntos
Oryza , Zinco , Humanos , Zinco/metabolismo , Oryza/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Metais/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas
17.
World J Urol ; 42(1): 184, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512539

RESUMO

PURPOSE: To assess the effectiveness of a deep learning model using contrastenhanced ultrasound (CEUS) images in distinguishing between low-grade (grade I and II) and high-grade (grade III and IV) clear cell renal cell carcinoma (ccRCC). METHODS: A retrospective study was conducted using CEUS images of 177 Fuhrmangraded ccRCCs (93 low-grade and 84 high-grade) from May 2017 to December 2020. A total of 6412 CEUS images were captured from the videos and normalized for subsequent analysis. A deep learning model using the RepVGG architecture was proposed to differentiate between low-grade and high-grade ccRCC. The model's performance was evaluated based on sensitivity, specificity, positive predictive value, negative predictive value and area under the receiver operating characteristic curve (AUC). Class activation mapping (CAM) was used to visualize the specific areas that contribute to the model's predictions. RESULTS: For discriminating high-grade ccRCC from low-grade, the deep learning model achieved a sensitivity of 74.8%, specificity of 79.1%, accuracy of 77.0%, and an AUC of 0.852 in the test set. CONCLUSION: The deep learning model based on CEUS images can accurately differentiate between low-grade and high-grade ccRCC in a non-invasive manner.


Assuntos
Carcinoma de Células Renais , Aprendizado Profundo , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Estudos Retrospectivos , Curva ROC
18.
Ecol Appl ; 34(1): e2813, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36708094

RESUMO

Understanding the mechanisms by which the geomorphic structures affect habitat invasibility by mediating various abiotic and biotic factors is essential for predicting whether these geomorphic structures may provide spatial windows of opportunity to facilitate range-expansion of invasive species in salt marshes. Many studies have linked geomorphic landscape features such as tidal channels to invasion by exotic plants, but the role of tidal channel meanders (i.e., convex and concave sides) in regulating the Spartina alterniflora invasion remains unclear. Here, we examined the combined effects of tidal channel meander-mediated hydrodynamic variables, soil abiotic stresses, and propagule pressure on the colonization of Spartina in the Yellow River Delta, China, by conducting field observations and experiments. The results showed that lower hydrodynamic disturbance, bed shear stress, and higher propagule pressure triggered by eddies due to the convex structure of channel meanders facilitated Spartina seedling establishment and growth, whereas the concave side considerably inhibited the Spartina invasion. Lower soil abiotic stresses also significantly promoted the invasibility of the channel meanders by Spartina. Based on these findings, we propose a conceptual framework to illustrate the effects of the meandering geomorphology of tidal channels on the mechanisms that might allow the landward spread of Spartina and related processes. Our results demonstrate that the meandering geomorphic structures of tidal channels could act as stepping-stones to significantly facilitate the landward invasion of Spartina along tidal channels. This implies that geomorphic characteristics of tidal channels should be integrated into invasive species control and salt marsh management strategies.


Assuntos
Ecossistema , Áreas Alagadas , Espécies Introduzidas , Poaceae , China , Solo/química
19.
Nanotechnology ; 35(27)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38522106

RESUMO

Light and thermal detectors based on the laser-induced transverse voltage (LITV) effect have garnered significant interest for their rapid and broad spectral response. In this study, we prepared the La-doped SrTiO3(STO) epitaxial thin films on the 12° inclined single crystal LaAlO3(LAO) (100) substrates using our home-designed metal-organic chemical vapor deposition system. Under the illumination of a 248 nm laser, the LITV signals of LaxSr1-xTiO3films were observed and showed dependence on the La doping level, which can be explained by the changes in the light absorption coefficient, thermal conductivity, and optical penetration depth. The optimized LITV signal was observed with a peak voltage of 23.25 V and a decay time of 106 ns under the laser power density of 1.0 mJ mm-2. The high peak voltage and fast response time of LaxSr1-xTiO3show great potential in the field of light and thermal detection.

20.
Environ Sci Technol ; 58(2): 1244-1254, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38178789

RESUMO

Carbonaceous aerosols (CA) from anthropogenic emissions have been significantly reduced in urban China in recent years. However, the relative contributions of fossil and nonfossil sources to CA in rural and background regions of China remain unclear. In this study, the sources of different carbonaceous fractions in fine aerosols (PM2.5) from five background sites of the China Meteorological Administration Atmosphere Watch Network during the winter of 2019 and 2020 were quantified using radiocarbon (14C) and organic markers. The results showed that nonfossil sources contributed 44-69% to total carbon at these five background sites. Fossil fuel combustion was the predominant source of elemental carbon at all sites (73 ± 12%). Nonfossil sources dominated organic carbon (OC) in these background regions (61 ± 13%), with biomass burning or biogenic-derived secondary organic carbon (SOC) as the most important contributors. However, the relative fossil fuel source to OC in China (39 ± 13%) still exceeds those at other regional/background sites in Asia, Europe, and the USA. SOC dominated the fossil fuel-derived OC, highlighting the impact of regional transport from anthropogenic sources on background aerosol levels. It is therefore imperative to develop and implement aerosol reduction policies and technologies tailored to both the anthropogenic and biogenic emissions to mitigate the environmental and health risks of aerosol pollution across China.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Fósseis , Monitoramento Ambiental/métodos , China , Carbono , Combustíveis Fósseis/análise , Aerossóis/análise , Estações do Ano , Atmosfera
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa