Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
FASEB J ; 38(13): e23706, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877842

RESUMO

The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Pré-Eclâmpsia , Trofoblastos , Trofoblastos/metabolismo , Feminino , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fusão Celular , Placenta/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética
2.
Biol Reprod ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647664

RESUMO

OBJECTIVE: The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth. METHODS: We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.5 days of embryonic development. The primary goal of this model was to elucidate the molecular mechanism of HMGB1 in placental development, assessing parameters such as placental weight, fetal weight, and bone development. Additionally, we utilized lentiviral interference and overexpression of HMGB1 in human trophoblast cells to further investigate HMGB1's functional role. RESULTS: Our findings indicate that HMGB1flox/floxElf5cre/+ mouse display fetal growth restriction (FGR), characterized by decreased placental and fetal weight and impaired bone development. And the absence of HMGB1 inhibits autophagosome formation, impairs lysosomal degradation, and disrupts autophagic flux. Depletion of HMGB1 in human trophoblast cells also suppresses cell viability, proliferation, migration, and invasion by inhibiting the ERK signaling pathway. Overexpression of HMGB1 observed the opposite phenotypes. CONCLUSIONS: HMGB1 participates in the regulation of autophagy through the ERK signaling pathway and affects placental development.

3.
Hum Reprod ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725195

RESUMO

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

4.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804489

RESUMO

The thermophysical properties and elemental abundances of the noble gases in terrestrial materials can provide unique insights into the Earth's evolution and mantle dynamics. Here, we perform extensive ab initio molecular dynamics simulations to determine the melting temperature and sound velocity of neon up to 370 GPa and 7500 K to constrain its physical state and storage capacity, together with to reveal its implications for the deep interior of the Earth. It is found that solid neon can exist stably under the lower mantle and inner core conditions, and the abnormal melting of neon is not observed under the entire temperature (T) and pressure (P) region inside the Earth owing to its peculiar electronic structure, which is substantially distinct from other heavier noble gases. An inspection of the reduction for sound velocity along the Earth's geotherm evidences that neon can be used as a light element to account for the low-velocity anomaly and density deficit in the deep Earth. A comparison of the pair distribution functions and mean square displacements of MgSiO3-Ne and Fe-Ne alloys further reveals that MgSiO3 has a larger neon storage capacity than the liquid iron under the deep Earth condition, indicating that the lower mantle may be a natural deep noble gas storage reservoir. Our results provide valuable information for studying the fundamental behavior and phase transition of neon in a higher T-P regime, and further enhance our understanding for the interior structure and evolution processes inside the Earth.

5.
Altern Ther Health Med ; 30(2): 131-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37856809

RESUMO

Objective: This study investigated the expression and clinical significance of Melanoma Associated Antigen (MAGE)-A proteins and mRNA in patients with non-small cell lung cancer (NSCLC). Methods: A retrospective study was conducted, and we selected a cohort of 88 NSCLC patients treated at our hospital from January 2015 to January 2020. Adjacent tissues were chosen as controls. The expression of MAGE-A proteins in lung cancer and adjacent tissues was assessed via Western blot, while MAGE-As mRNA expression was measured using RT-PCR. Results: The relative expression levels of MAGE-A proteins and mRNA in NSCLC tissues were significantly higher than those in adjacent tissues (P < .05), with values of (0.343 ± 0.101) and (0.728 ± 0.112), respectively. Furthermore, MAGE-As protein expression was significantly higher in stage III - IV lung cancer compared to stage I - II (P < .05). No significant differences were observed in MAGE-A protein expression concerning gender, age, tumor diameter, pathological type, and differentiation degree (P > .05). The relative expression of MAGE-As mRNA was significantly higher in clinical stage III - IV and moderately differentiated lung cancer tissues compared to stage I - II and well-differentiated tissues (P < .05). No significant differences were found in MAGE-As mRNA expression concerning gender, age, tumor diameter, and pathological type (P > .05). Patients with high MAGE-As mRNA expression had a significantly shorter median overall survival of 33 months (95% CI: 31.64-34.36) compared to those with low MAGE-As mRNA expression (P < .05). However, no significant difference was observed in median overall survival between patients with high and low MAGE-As protein expression (P > .05). Conclusions: In NSCLC, the up-regulation of MAGE-A proteins and mRNA is associated with clinical stage and differentiation degree, warranting further investigation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos Retrospectivos , RNA Mensageiro , Relevância Clínica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo
6.
Opt Express ; 31(2): 3258-3268, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785322

RESUMO

A Bragg grating is successfully inscribed in a piece of strongly coupled seven-core fiber (SCF). There are two separate Bragg resonance notches observed in the transmission spectrum, corresponding to backward coupling of HE11-like and HE12-like supermodes of the SCF. The mode coupling mechanism of the Bragg grating is theoretically investigated via modeling and analyzing modal properties of the SCF. The theoretical results agree well with the experimental results. Since the SCF is spliced between two standard single mode fibers with central alignments at both ends, the transmission spectrum of the device also contains a set of interference fringe due to modal interference between the supermodes. The device's responses to temperature and curvature are experimentally measured, respectively. The obtained temperature sensitivities and curvature sensitivities of the supermode Bragg grating notches are 9.55 pm/°C and 9.55 pm/°C, -1.8 pm/m-1 and -112.3 pm/m-1, respectively. The obtained temperature sensitivity and curvature sensitivity of one of the interference spectrum dips are 11.8 pm/°C and -3909.8 pm/m-1, respectively. This device is potentially useful for simultaneous measurement of temperature and curvature.

7.
Environ Sci Technol ; 57(42): 16053-16064, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37824517

RESUMO

Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.


Assuntos
Brassica , Ciprofloxacina , Rizosfera , Nitratos , Nitrogênio/análise , Antibacterianos , Bactérias/genética , Plantas , Solo , Microbiologia do Solo
8.
Phys Chem Chem Phys ; 25(43): 29633-29640, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37880996

RESUMO

We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS1.75Te0.25 matrix. The presence of type-II Van Hove singularity in the middle of the X-S path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS1.75Te0.25 clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the dz2 orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-px orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the dz2 and px orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS1.75Te0.25 spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation.

9.
Phys Chem Chem Phys ; 25(27): 18224-18232, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37395132

RESUMO

The electrocatalytic nitrogen reduction reaction (NRR) is a promising technology for the synthesis of NH3 in an ambient environment. However, developing low-cost and high-efficiency electrocatalysts still remains a long-standing challenge. In this work, density function theory (DFT) calculations are done to systematically investigate the NRR catalytic activity of transition metals (TM = Sc-Cu, Y-Ag, and Hf-Au) supported on monolayer graphyne (GY). TM@GY (TM = Sc, V, Mn, Y, Tc, and Os) with excellent NRR performance are demonstrated. The mixed pathway is the most favorable for Sc, V, Y, and Os@GY with the potentials of -0.37, -0.27, -0.40, and -0.36 V, respectively, while the distal reaction pathway is most favorable for Mn and Tc@GY with the potentials of -0.37 and -0.42 V. Most strikingly, Mn, Tc, and Os@GY exhibit high NRR selectivity. This work provides a screening scheme for exploring highly efficient electrocatalysts for the electrochemical NRR under ambient conditions.

10.
Lab Invest ; 102(1): 4-13, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34497366

RESUMO

As one of the major approaches in combating the COVID-19 pandemics, the availability of specific and reliable assays for the SARS-CoV-2 viral genome and its proteins is essential to identify the infection in suspected populations, make diagnoses in symptomatic or asymptomatic individuals, and determine clearance of the virus after the infection. For these purposes, use of the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) for detection of the viral nucleic acid remains the most valuable in terms of its specificity, fast turn-around, high-throughput capacity, and reliability. It is critical to update the sequences of primers and probes to ensure the detection of newly emerged variants. Various assays for increased levels of IgG or IgM antibodies are available for detecting ongoing or past infection, vaccination responses, and persistence and for identifying high titers of neutralizing antibodies in recovered individuals. Viral genome sequencing is increasingly used for tracing infectious sources, monitoring mutations, and subtype classification and is less valuable in diagnosis because of its capacity and high cost. Nanopore target sequencing with portable options is available for a quick process for sequencing data. Emerging CRISPR-Cas-based assays, such as SHERLOCK and AIOD-CRISPR, for viral genome detection may offer options for prompt and point-of-care detection. Moreover, aptamer-based probes may be multifaceted for developing portable and high-throughput assays with fluorescent or chemiluminescent probes for viral proteins. In conclusion, assays are available for viral genome and protein detection, and the selection of specific assays depends on the purposes of prevention, diagnosis and pandemic control, or monitoring of vaccination efficacy.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Pandemias , SARS-CoV-2 , Anticorpos Antivirais/análise , Antígenos Virais/análise , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/tendências , Teste Sorológico para COVID-19/métodos , Teste Sorológico para COVID-19/tendências , Teste para COVID-19/tendências , Genoma Viral , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/tendências , Mutação , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/tendências , Fases de Leitura Aberta , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/tendências , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/tendências
11.
Mol Hum Reprod ; 28(5)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35536241

RESUMO

Human cytotrophoblast (CTB) differentiation into syncytiotrophoblast (STB) is essential for placental formation and function. Understanding the molecular mechanisms involved in trophoblast differentiation is necessary as it would help in the development of novel therapeutic agents to treat placentation-mediated pregnancy complications. In this study, we found a common upregulated gene, ADAM-like Decysin-1 (ADAMDEC1), from five published microarray and RNA-sequencing datasets. Interference to ADAMDEC1 impaired forskolin-induced BeWo cells differentiation, while ADAMDEC1 overexpression promoted BeWo cells and 3D JEG-3 spheroids differentiation. Interestingly, ADAMDEC1 may inhibit Thrombospondin 1 rather than E-cadherin to trigger the activation of the cAMP signal pathway during CTB differentiation into STB. More importantly, a decreasing in ADAMDEC1 might be involved in the development of preeclampsia. Therefore, ADAMDEC1 is expected to become a new target for prediction of and intervention in placenta-derived pregnancy diseases.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , Placenta , Placentação/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/metabolismo
12.
J Med Virol ; 94(8): 3982-3987, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35474579

RESUMO

There is a potential risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread through human contact with seafood and the inanimate materials contaminated by the virus. In this study, we examined the stability of the virus in artificial seawater (ASW) and on the surface of selected materials. SARS-CoV-2 (3.75 log10 TCID50 ) in ASW at 22℃ maintained infectious about 3 days and at 4℃ the virus survived more than 7 days. It should be noticed that viable virus at high titer (5.50 log10 TCID50 ) may survive more than 20 days in ASW at 4℃ and for 7 days at 22℃. SARS-CoV-2 on stainless steel and plastic bag maintained infectious for 3 days, and on nonwoven fabric for 1 day at 22℃. In addition, the virus remained infectious for 9 days on stainless steel and non-woven fabric, and on plastic bag for 12 days at 4℃. It is important to highlight the role of inanimate material surfaces as a source of infection and the necessity for surface decontamination and disinfection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Plásticos , Água do Mar , Aço Inoxidável
13.
Phys Chem Chem Phys ; 24(31): 18983-18991, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35917181

RESUMO

We have successfully predicted the local topological bands in the frustrated kagome lattice SbV3S5. An important future research direction is to raise the kagome band with novel co-existing strong nonlinear dispersion and strong cohesion due to the anisotropic inner field of kagome SbV3S5 to the Fermi level. The Z2 topological index of T-invariant systems provides evidence for a σyz near the Fermi level that determines the quantum anomalous Hall state. This shows that the quantum anomalous Hall effect (QAHE) phase of the kagome lattice SbV3S5 has a weak topological stability that is sensitive to weak disorder and field interactions. Neighbouring van Hove singularities near the Fermi level induced a quantum anomalous Hall conductivity and charge density wave platform.

14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(5): 805-814, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36224682

RESUMO

Objective: To explore the effects of hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA) on the migration and invasion of HTR-8/SVneo cells, a human trophoblast cell line, and its potential mechanism of action. Methods: Immunofluorescence staining was done to evaluate the expression levels of HADHA in samples of normal villi and recurrent spontaneous abortion (RSA) villi at 6-8 weeks. Lentiviral infection system was used to construct stable HTR-8/SVneo cell lines with HADHA overexpression and knockdown. Western blot, qRT-PCR, Wound-healing assay, and Transwell assay were used to determine the effect of HADHA on the migration and invasion of HTR-8/SVneo cells and the expression of relevant genes. Transcriptome sequencing and bioinformatics analysis were done to screen for the potential target genes and signaling pathways regulated by HADHA. The specific molecular mechanism of how HADHA regulates the migration and invasion of HTR-8/SVneo cells was examined by adding the inhibitor of protein kinase B (PKB/AKT). Results: HADHA was highly expressed in extravillous trophoblasts (EVT) of RSA villus samples as compared with samples from the normal control group. In HTR-8/SVneo cells overexpressing HADHA, the expression levels of migration and invasion-related genes, including HLA-G, MMP2, MMP9, and NCAD, were decreased (P<0.01,P<0.05), and the migration and invasion abilities of HTR-8/SVneo cells were weakened (P<0.05). HADHA knockdown increased the expression levels of HLA-G, MMP2, MMP9, and NCAD (P<0.01, P<0.05), and promoted the migration and invasion of HTR-8/SVneo cells (P<0.05). In addition, HADHA overexpression decreased the phosphorylation levels of PI3K and AKT (P<0.05) and inhibited the PI3K/AKT signaling pathway. HADHA knockdown activated the PI3K/AKT signaling pathway. When MK-2206, an AKT inhibitor, was added to stable HTR-8/SVneo cell lines with HADHA knockdown, the migration and invasion of the cells were significantly reduced. Conclusion: HADHA inhibits the migration and invasion of HTR-8/SVneo cells by inhibiting the PI3K/AKT signaling pathway.


Assuntos
Pré-Eclâmpsia , Proteínas Proto-Oncogênicas c-akt , Movimento Celular/fisiologia , Coenzima A/metabolismo , Coenzima A/farmacologia , Feminino , Antígenos HLA-G/metabolismo , Antígenos HLA-G/farmacologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Trofoblastos/metabolismo
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(6): 573-577, 2020 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-32571454

RESUMO

OBJECTIVE: To study the effect of early continuous blood purification (CBP) on the prognosis of children with septic shock. METHODS: A prospective analysis was performed for the children with septic shock who did not reach the 6-hour initial recovery target and/or had a fluid overload of >10%. According to the treatment time of CBP, they were divided into an early group with 30 children and a conventional group with 28 children. The two groups were compared in terms of the start time of CBP and 28-day mortality rate, as well as the related indexes in the children who were cured. RESULTS: The early group had a significantly earlier start time of CBP than the conventional group (P<0.05). There were 25 children cured in the early group and 22 cured in the conventional group, and there was no significant difference in 28-day mortality rate between the two groups (P>0.05). The children who were cured in the early group had significantly shorter correction time of lactic acid, urine volume, and fluid overload than those in the conventional group (P<0.05). The children who were cured in both groups had significant reductions in the percentages of T-lymphocyte subsets at the beginning (P<0.05); on reexamination on day 7, the percentages of T-lymphocyte subsets were increased and were higher in the early group than in the conventional group (P<0.05). The children who were cured in the early group had significantly shorter duration of CBP treatment, duration of mechanical ventilation, and length of stay in the PICU than those in the conventional group (P<0.05). CONCLUSIONS: For children with septic shock who do not reach the 6-hour initial recovery target and/or have a fluid overload of >10%, early CBP treatment can quickly control the disease, shorten the course of disease, and accelerate immune reconstruction.


Assuntos
Choque Séptico , Criança , Hidratação , Humanos , Ácido Láctico , Prognóstico , Estudos Prospectivos , Respiração Artificial
16.
BMC Cancer ; 17(1): 655, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927388

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) has led to the highest cancer-related mortality for decades. To enhance the efficiency of early diagnosis and therapy, more efforts are urgently needed to reveal the origins of NSCLC. In this study, we explored the effect of miR-542-5p in NSCLC with clinical samples and in vivo models and further explored the prospective function of miR-542-5p though bioinformatics methods. METHODS: A total of 125 NSCLC tissue samples were collected, and the expression of miR-542-5p was detected by qRT-PCR. The relationship between miR-542-5p level and clinicopathological features was analyzed. The effect of miR-542-5p on survival time was also explored with K-M survival curves and Cox's regression. The effect of miR-542-5p on the tumorigenesis of NSCLC was verified with a chick chorioallantoic membrane (CAM) model. The potential target genes were predicted by bioinformatics tools, and relevant pathways were analyzed by GO and KEGG. Several hub genes were validated by Proteinatlas. RESULTS: The expression of miR-542-5p was down-regulated in NSCLC tissues, and consistent results were also found in the subgroups of adenocarcinoma and squamous cell carcinoma. Down-regulation of miR-542-5p was found to be connected with advanced TNM stage, vascular invasion, lymphatic metastasis and EGFR. Survival analyses showed that patients with lower miR-542-5p levels had markedly poorer prognosis. Both tumor growth and angiogenesis were significantly suppressed by miR-542-5p mimic in the CAM model. The potential 457 target genes of miR-542-5p were enriched in several key cancer-related pathways, such as morphine addiction and the cAMP signaling pathway from KEGG. Interestingly, six genes (GABBR1, PDE4B, PDE4C, ADCY6, ADCY1 and GIPR) from the cAMP signaling pathway were confirmed to be overexpressed in NSCLCs tissues. CONCLUSIONS: This evidence suggests that miR-542-5p is a potential tumor-suppressed miRNA in NSCLC, which has the potential to act as a diagnostic and therapeutic target of NSCLC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/fisiologia , Neovascularização Patológica/metabolismo , Células A549 , Animais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/secundário , Embrião de Galinha , Membrana Corioalantoide/patologia , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Genes Supressores de Tumor , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Transplante de Neoplasias , Prognóstico , Interferência de RNA
18.
Apoptosis ; 21(1): 13-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26467923

RESUMO

Low back pain is associated with intervertebral disc degeneration (IVDD) due to cellular loss through apoptosis. Mechanical factors play an important role in maintaining the survival of the annulus fibrosus (AF) cells and the deposition of extracellular matrix. However, the mechanisms that excessive mechanical forces lead to AF cell apoptosis are not clear. The present study was to look for how AF cells sense mechanical changes. In vivo experiments, the involvement of mechanoreceptors in apoptosis was examined by RT-PCR and/or immunoblotting in the lumbar spine of rats subjected to unbalanced dynamic and static forces. In vitro experiments, we investigated apoptotic signaling pathways in untransfected and transfected AF cells with the lentivirus vector for rat ß1 integrin overexpression after cyclic stretch. Apoptosis in AF cells was assessed using flow cytometry, Hoechst 33258 nuclear staining. Western blotting was used to analyze expression of ß1 integrin and caspase-3 and ERK1/2 MAPK signaling molecules. In the rat IVDD model, unbalanced dynamic and static forces induced apoptosis of disc cells, which corresponded to decreased expression of ß1 integrin. Cyclic stretch-induced apoptosis in rat AF cells correlated with the activation of caspase-3 and with decreased levels of ß1 integrin and the phosphorylation levels of ERK1/2 activation level. However, the overexpression of ß1 integrin in AF cells ameliorated cyclic stretch-induced apoptosis and decreased caspase-3 activation. Furthermore, ERK1/2-specific inhibitor promotes apoptosis in vector ß1-infected AF cells. These results suggest that the disruption of ß1 integrin signaling may underlie disc cell apoptosis induced by mechanical stress. Further work is necessary to fully elucidate the pathophysiological mechanisms that underlie IVDD caused by unbalanced dynamic and static forces.


Assuntos
Condrócitos/metabolismo , Integrina beta1/genética , Degeneração do Disco Intervertebral/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Osteoblastos/metabolismo , Animais , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Integrina beta1/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Lentivirus/genética , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Masculino , Mecanotransdução Celular/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteoblastos/patologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Transfecção
19.
Cancer Cell Int ; 16: 89, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980454

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown. METHODS: HOXA11-AS was knocked down in the NSCLC A549 cell line and a high throughput microarray assay was applied to detect changes in the gene profiles of the A549 cells. Bioinformatics analyses (gene ontology (GO), pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses) were performed to investigate the potential pathways and networks of the differentially expressed genes. The molecular signatures database (MSigDB) was used to display the expression profiles of these differentially expressed genes. Furthermore, the relationships between the HOXA11-AS, de-regulated genes and clinical NSCLC parameters were verified by using NSCLC patient information from The Cancer Genome Atlas (TCGA) database. In addition, the relationship between HOXA11-AS expression and clinical diagnostic value was analyzed by receiver operating characteristic (ROC) curve. RESULTS: Among the differentially expressed genes, 277 and 80 genes were upregulated and downregulated in NSCLC, respectively (fold change ≥2.0, P < 0.05 and false discovery rate (FDR) < 0.05). According to the degree of the fold change, six upregulated and three downregulated genes were selected for further investigation. Only four genes (RSPO3, ADAMTS8, DMBT1, and DOCK8) were reported to be related with the development or progression of NSCLC based on a PubMed search. Among all possible pathways, three pathways (the PI3K-Akt, TGF-beta and Hippo signaling pathways) were the most likely to be involved in NSCLC development and progression. Furthermore, we found that HOXA11-AS was highly expressed in both lung adenocarcinoma and squamous cell carcinoma based on TCGA database. The ROC curve showed that the area under curve (AUC) of HOXA11-AS was 0.727 (95% CI 0.663-0.790) for lung adenocarcinoma and 0.933 (95% CI 0.906-0.960) for squamous cell carcinoma patients. Additionally, the original data from TCGA verified that ADAMTS8, DMBT1 and DOCK8 were downregulated in both lung adenocarcinoma and squamous cell carcinoma, whereas RSPO3 expression was upregulated in lung adenocarcinoma and downregulated in lung squamous cell carcinoma. For the other five genes (STMN2, SPINK6, TUSC3, LOC100128054, and C8orf22), we found that STMN2, TUSC3 and C8orf22 were upregulated in squamous cell carcinoma and that STMN2 and USC3 were upregulated in lung adenocarcinoma. Furthermore, we compared the correlation between HOXA11-AS and de-regulated genes in NSCLC based on TCGA. The results showed that the HOXA11-AS expression was negatively correlated with DOCK8 in squamous cell carcinoma (r = -0.124, P = 0.048) and lung adenocarcinoma (r = -0.176, P = 0.005). In addition, RSPO3, ADAMTS8 and DOCK8 were related to overall survival and disease-free survival (all P < 0.05) of lung adenocarcinoma patients in TCGA. CONCLUSIONS: Our results showed that the gene profiles were significantly changed after HOXA11-AS knock-down in NSCLC cells. We speculated that HOXA11-AS may play an important role in NSCLC development and progression by regulating the expression of various pathways and genes, especially DOCK8 and TGF-beta pathway. However, the exact mechanism should be verified by functional experiments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa