RESUMO
We synthesized a novel, structured lipid containing caprylic acid at its sn-1,3 position and docosahexaenoic acid at its sn-2 position (1,3C-2D-TAG) by using a two-step enzymatic method and then investigated the relationship between the types of fatty acids in the structured lipid and their physiological functions. Furthermore, we compared the effects of similarly structured lipids on postprandial lipid metabolism and obesity protection. The results revealed that the novel structured lipid synthesized using the enzymatic method not only exhibited better physical properties than traditional oils but also had high oxidation stability and crystallization degree. In terms of physiological function, the low-dose 1,3C-2D-TAG group exhibited higher cholesterol and triglyceride levels, lower kidney weight or body weight, and higher serum aspartate aminotransferase and blood urea nitrogen levels than control group, whereas the high-dose 1,3C-2D-TAG group exhibited higher triglyceride levels. Moreover, the medium-dose 1,3C-2D-TAG group had remarkably higher high-density lipoprotein cholesterol levels and lower low-density lipoprotein cholesterol levels than the high-lipid, control, and 1,2,3C-TAG groups; however, the cholesterol and triglyceride levels and kidney and liver functions did not differ significantly among these groups. The study results suggest that 1,3C-2D-TAG can not only facilitate the effective utilization of the energy supplied by medium-chain fatty acids but also help overcome difficulties in the absorption of long-chain polyunsaturated fatty acids.
RESUMO
Type 2 Diabetes mellitus (T2DM) is one of the most common chronic multifactorial diseases, which is associated with the increased concentration of glucose in the blood. Therefore, the utilization of blood lowering agents is clearly a promising approach which can lead to a suppression of the evaluated blood glucose, and thus curing T2DM and other complication. In this study, we evaluated the glucose lowering effect of a varieties of amino acids (alanine and histidine), dipeptides (carnosine and α-alanine-L-histidine), and tripeptide (glutathione) by reacting with glucose, fructose, and sucrose under 37°C and pH 7.4 to mimic their reaction in physiological condition. By measuring the reduction of reactants and the formation of Maillard reaction products over the course of 21 days' storage, we found that the glucose lowering effect of carnosine was better than the counterparts. The histidine residue in carnosine may contribute to its glucose lowing effect while ß-amino acid ß-alanine residue could facilitate the glucose lowering effect of carnosine by maintaining its chemical stability during the storage. These results may open up new avenues for the applications of bioactive peptide carnosine as a natural blood sugar lowering agent to control T2DM.
RESUMO
a dual DNA tweezers nanomachine was developed for one-step simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in food samples. The dual DNA tweezers are locked by the aptamers of mycotoxins, resulting the "turn off" of fluorescent signal. In the presence of AFB1 and OTA, the aptamers can bind with their corresponding targets, resulting the "open" of DNA tweezers and the "turn on" of the fluorescent signals. The limits of detections were 3.5 × 10-2 ppb for AFB1 and 0.1 ppb for OTA. Moreover, the applicability of the method was further demonstrated by conducting a limited survey on 5 samples collected from various sources. The recoveries of this method change from 90.0% to 110.0% for simultaneous detection of AFB1 or OTA and the RSDs vary from 4.1% to 9.2%. Detection uncertainties were within 5% (with a 95% confidence level).
Assuntos
Aflatoxina B1/análise , DNA , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Nanotecnologia/métodos , Ocratoxinas/análise , Limite de Detecção , Pinças Ópticas , Fatores de TempoRESUMO
The current work aimed to clarify the effects of four structured lipids, including monoglycerides with docosahexaenoic acid (2D-MAG), diacylglycerols with caprylic acid (1,3C-DAG), triglyceride with caprylic acid at sn-1,3 and DHA at sn-2 position (1,3C-2D-TAG) and caprylic triglyceride on the oxidative stability of stripped soybean oil (SSO). The results revealed that compared to the blank group of SSO, the oxidation induction period of the sample with 2 wt% 2D-MAG and that with 1,3C-DAG were delayed by 2-3 days under accelerated oxidation conditions (50 °C), indicating that 2D-MAG and 1,3C-DAG prolonged the oxidation induction period of SSO. However, the inhibitory effect of α-tocopherol on SSO oxidation was reduced by 2D-MAG after addition of 2D-MAG to SSO containing α-tocopherol. 2D-MAG exhibited different antioxidative/pro-oxidative effects in the added/non-added antioxidants system. Compared to caprylic triglyceride, DHA at the sn-2 acyl site induced oxidation of structured lipids, thus further promoting the oxidation of SSO. The antioxidant was able to inhibit not only the oxidation of DHA in the SSO, but also the transesterification of sn-2 DHA to sn-1/sn-3 DHA in the structured lipid.
RESUMO
The current work aimed to evaluate the effect of ultrasonic treatment on the enzymatic transesterification of medium-long-medium (MLM) lipids using 2-monoacylglycerol, bearing distinct fatty acids at the sn-2 position with palmitic acid, octadecanoic acid, oleic acid, eicosapentaenoic acid, and docosahexaenoic acids as sn-2 acyl donors. The effects of ultrasonic treatment conditions, including substrate concentration, reaction temperature and time, and enzyme loading, on the insertion of fatty acids into the sn-2 acyl position of MLM lipids were investigated. The data showed that low-frequency ultrasonic treatment could remarkably improve the insertion rate of polyunsaturated fatty acid (PUFA) into the sn-2 position of MLM lipids, compared with the conventional treatment method. By increasing the ultrasonic frequency from 20 to 30 KHz, while maintaining power at 150 W, the rate of synthesis of monounsaturated fatty acid and PUFA increased from 23.7% and 26.8% to 26.6% and 32.4% (p < 0.05), respectively. Moreover, ultrasonic treatment reduced the optimum reaction temperature from 45 to 35°C. However, the activity of Lipozyme RM-IM treated with ultrasound considerably declined from 31.10% to 26.90% (p < 0.05) after its fourth cycle, which was lower than that without ultrasonic treatment. This work provokes new routes for the utilization of ultrasonic technology in the synthesis of MLM lipids using different fatty acids as sn-2 acyl donors.
RESUMO
The aim of this study was to explore the volatile compounds of hind leg, foreleg, abdomen and Longissimus dorsi in both male and female Hyla rabbit meat by solid phase microextraction tandem with gas chromatography mass spectrometry, and to seek out the key odorants via calculating the odor activity value and principal component analysis. Cluster analysis is used to study the flavor pattern differences in four edible parts. Sixty three volatile compounds were detected, including 23 aldehydes, 4 alcohols, 5 ketones, 11 esters, 5 aromatics, 8 acids and 7 hydrocarbons. Among them, 6 aldehydes and 3 acids were identified as the potential key odorants according to the ratio of concentration and threshold. The contents of volatile compounds in male Hyla rabbit meat were significantly higher than those in female one (p<0.05). The results of principal component analysis showed that the first two principal component cumulative variance contributions reach 87.69%; Hexanal, octanal, 2-nonenal, 2-decenal and decanal were regard as the key odorants of Hyla rabbit meat by combining odor activity value and principal component analysis. Therefore volatile compounds of rabbit meat can be effectively characterized. Cluster analysis indicated that volatile chemical compounds of Longissimus dorsi were significantly different from other three parts, which provide reliable information for rabbit processing industry and for possible future sale.
RESUMO
The changes in fatty acid composition of total intramuscular lipid and phospholipids were investigated in the longissimus dorsi, left-hind leg muscle, and abdominal muscle of male Ira rabbits. Changes were monitored at 35, 45, 60, 75, and 90 d. Analysis using gas chromatography identified 21 types of fatty acids. Results showed that the intramuscular lipid increased and the intramuscular phospholipids (total intramuscular lipid %) decreased in all muscles with increasing age (p<0.05). An abundant amount of unsaturated fatty acids, especially polyunsaturated fatty acids, was distributed in male Ira rabbits at different ages and muscles. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and arachidonic acid (C20:4) were the major fatty acids, which account to the dynamic changes of the n-6/n-3 value in Ira rabbit meat.