Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 3406-3418, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412313

RESUMO

RNA helicases function as versatile enzymes primarily responsible for remodeling RNA secondary structures and organizing ribonucleoprotein complexes. In our study, we conducted a systematic analysis of the helicase-related activities of Escherichia coli HrpA and presented the structures of both its apo form and its complex bound with both conventional and non-canonical DNAs. Our findings reveal that HrpA exhibits NTP hydrolysis activity and binds to ssDNA and ssRNA in distinct sequence-dependent manners. While the helicase core plays an essential role in unwinding RNA/RNA and RNA/DNA duplexes, the N-terminal extension in HrpA, consisting of three helices referred to as the APHB domain, is crucial for ssDNA binding and RNA/DNA duplex unwinding. Importantly, the APHB domain is implicated in binding to non-canonical DNA structures such as G-quadruplex and i-motif, and this report presents the first solved i-motif-helicase complex. This research not only provides comprehensive insights into the multifaceted roles of HrpA as an RNA helicase but also establishes a foundation for further investigations into the recognition and functional implications of i-motif DNA structures in various biological processes.


Assuntos
DNA Helicases , Proteínas de Escherichia coli , Sequência de Aminoácidos , DNA/química , DNA Helicases/metabolismo , DNA de Cadeia Simples/genética , Escherichia coli/metabolismo , RNA/química , RNA Helicases/genética , Proteínas de Escherichia coli/metabolismo
2.
J Biol Chem ; 295(51): 17646-17658, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454004

RESUMO

RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3'-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5'-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.


Assuntos
DNA/metabolismo , Escherichia coli/enzimologia , Quadruplex G , RecQ Helicases/metabolismo , Reparo do DNA , Transferência Ressonante de Energia de Fluorescência , Humanos , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , RecQ Helicases/química , RecQ Helicases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
3.
Biochem Biophys Res Commun ; 567: 190-194, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34166917

RESUMO

Pif1 helicases, conserved in eukaryotes, are involved in maintaining genome stability in both the nucleus and mitochondria. Here, we report the crystal structure of a truncated Candida Albicans Pif1 (CaPif1368-883) in complex with ssDNA and an ATP analog. Our results show that the Q-motif is responsible for identifying adenine bases, and CaPif1 preferentially utilizes ATP/dATP during dsDNA unwinding. Although CaPif1 shares structural similarities with Saccharomyces cerevisiae Pif1, CaPif1 can contact the thymidine bases of DNA by hydrogen bonds, whereas ScPif1 cannot. More importantly, the crosslinking and mutant experiments have demonstrated that the conformational change of domain 2B is necessary for CaPif1 to unwind dsDNA. These findings contribute to further the understanding of the unwinding mechanism of Pif1.


Assuntos
Candida albicans/metabolismo , DNA Helicases/metabolismo , Proteínas Fúngicas/metabolismo , Trifosfato de Adenosina/metabolismo , Candida albicans/química , Candidíase/microbiologia , Cristalografia por Raios X , DNA/metabolismo , DNA Helicases/química , DNA de Cadeia Simples/metabolismo , Proteínas Fúngicas/química , Humanos , Modelos Moleculares , Conformação Proteica
4.
Biochem Biophys Res Commun ; 504(1): 334-339, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30190128

RESUMO

RNA helicases are almost ubiquitous important enzymes that take part in multiple aspects of RNA metabolism. Prokaryotes encode fewer RNA helicases than eukaryotes, suggesting that individual prokaryotic RNA helicases may take on multiple roles. The specific functions and molecular mechanisms of bacterial DEAH/RHA helicases are poorly understood, and no structures are available of these bacterial enzymes. Here, we report the first crystal structure of the DEAH/RHA helicase HrpB of Escherichia coli in a complex with ADP•AlF4. It showed an atypical globular structure, consisting of two RecA domains, an HA2 domain and an OB domain, similar to eukaryotic DEAH/RHA helicases. Notably, it showed a unique C-terminal extension that has never been reported before. Activity assays indicated that EcHrpB binds RNA but not DNA, and does not exhibit unwinding activity in vitro. Thus, within cells, the EcHrpB may function in helicase activity-independent RNA metabolic processes.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/enzimologia , Difosfato de Adenosina/química , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Ácidos Nucleicos/química , Nucleotídeos/química , Estrutura Secundária de Proteína , RNA/química
5.
Cell Rep ; 36(10): 109688, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496242

RESUMO

There is broad consensus that RecQ family helicase is a high-order oligomer that dissociates into a dimer upon ATP binding. This conclusion is based mainly on studies of highly purified recombinant proteins, and the oligomeric states of RecQ helicases in living cells remain unknown. We show here that, in contrast to current models, monomeric RECQL helicase is more abundant than oligomer/dimer forms in living cells. Further characterization of endogenous BtRECQL and isolated monomeric BtRECQL using various approaches demonstrates that both endogenous and recombinant monomeric BtRECQL effectively function as monomers, displaying higher helicase and ATPase activities than dimers and oligomers. Furthermore, monomeric BtRECQL unfolds intramolecular G-quadruplex DNA as efficiently as human RECQL and BLM helicases. These discoveries have implications for understanding endogenous RECQL oligomeric structures and their regulation. It is worth revisiting oligomeric states of the other members of the RecQ family helicases in living cells.


Assuntos
Neoplasias da Mama/metabolismo , DNA/metabolismo , Predisposição Genética para Doença/genética , RecQ Helicases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Neoplasias da Mama/genética , Bovinos , Quadruplex G , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa