RESUMO
Methylation of cytosine to 5-methylcytosine (5mC) is a prevalent DNA modification found in many organisms. Sequential oxidation of 5mC by ten-eleven translocation (TET) dioxygenases results in a cascade of additional epigenetic marks and promotes demethylation of DNA in mammals1,2. However, the enzymatic activity and function of TET homologues in other eukaryotes remains largely unexplored. Here we show that the green alga Chlamydomonas reinhardtii contains a 5mC-modifying enzyme (CMD1) that is a TET homologue and catalyses the conjugation of a glyceryl moiety to the methyl group of 5mC through a carbon-carbon bond, resulting in two stereoisomeric nucleobase products. The catalytic activity of CMD1 requires Fe(II) and the integrity of its binding motif His-X-Asp, which is conserved in Fe-dependent dioxygenases3. However, unlike previously described TET enzymes, which use 2-oxoglutarate as a co-substrate4, CMD1 uses L-ascorbic acid (vitamin C) as an essential co-substrate. Vitamin C donates the glyceryl moiety to 5mC with concurrent formation of glyoxylic acid and CO2. The vitamin-C-derived DNA modification is present in the genome of wild-type C. reinhardtii but at a substantially lower level in a CMD1 mutant strain. The fitness of CMD1 mutant cells during exposure to high light levels is reduced. LHCSR3, a gene that is critical for the protection of C. reinhardtii from photo-oxidative damage under high light conditions, is hypermethylated and downregulated in CMD1 mutant cells compared to wild-type cells, causing a reduced capacity for photoprotective non-photochemical quenching. Our study thus identifies a eukaryotic DNA base modification that is catalysed by a divergent TET homologue and unexpectedly derived from vitamin C, and describes its role as a potential epigenetic mark that may counteract DNA methylation in the regulation of photosynthesis.
Assuntos
5-Metilcitosina/metabolismo , Proteínas de Algas/metabolismo , Ácido Ascórbico/metabolismo , Biocatálise , Chlamydomonas reinhardtii/enzimologia , DNA/química , DNA/metabolismo , 5-Metilcitosina/química , Dióxido de Carbono/metabolismo , Metilação de DNA , Glioxilatos/metabolismo , Nucleosídeos/química , Nucleosídeos/metabolismo , FotossínteseRESUMO
The transition from meiotic spermatocytes to postmeiotic haploid germ cells constitutes an essential step in spermatogenesis. The epigenomic regulatory mechanisms underlying this transition remain unclear. Here, we find a prominent transcriptomic switch from the late spermatocytes to the early round spermatids during the meiotic-to-postmeiotic transition, which is associated with robust histone acetylation changes across the genome. Among histone deacetylases (HDACs) and acetyltransferases, we find that HDAC3 is selectively expressed in the late meiotic and early haploid stages. Three independent mouse lines with the testis-specific knockout of HDAC3 show infertility and defects in meiotic exit with an arrest at the late stage of meiosis or early stage of round spermatids. Stage-specific RNA-seq and histone acetylation ChIP-seq analyses reveal that HDAC3 represses meiotic/spermatogonial genes and activates postmeiotic haploid gene programs during meiotic exit, with associated histone acetylation alterations. Unexpectedly, abolishing HDAC3 catalytic activity by missense mutations in the nuclear receptor corepressor (NCOR or SMRT) does not cause infertility, despite causing histone hyperacetylation as HDAC3 knockout, demonstrating that HDAC3 enzyme activity is not required for spermatogenesis. Motif analysis of the HDAC3 cistrome in the testes identified SOX30, which has a similar spatiotemporal expression pattern as HDAC3 during spermatogenesis. Depletion of SOX30 in the testes abolishes the genomic recruitment of the HDAC3 to the binding sites. Collectively, these results establish the SOX30/HDAC3 signaling as a key regulator of the transcriptional program in a deacetylase-independent manner during the meiotic-to-postmeiotic transition in spermatogenesis.
Assuntos
Fertilidade/genética , Regulação da Expressão Gênica , Histona Desacetilases/fisiologia , Meiose/genética , Espermatogênese/genética , Ativação Transcricional , Acetilação , Animais , Reprogramação Celular/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição SOX/metabolismo , Espermátides/citologia , Espermátides/metabolismo , Testículo/metabolismoRESUMO
Transcription factors of the Sox protein family contain a DNA-binding HMG box and are key regulators of progenitor cell fate. Here, we report that expression of Sox30 is restricted to meiotic spermatocytes and postmeiotic haploids. Sox30 mutant males are sterile owing to spermiogenic arrest at the early round spermatid stage. Specifically, in the absence of Sox30, proacrosomic vesicles fail to form a single acrosomal organelle, and spermatids arrest at step 2-3. Although most Sox30 mutant spermatocytes progress through meiosis, accumulation of diplotene spermatocytes indicates a delayed or impaired transition from meiotic to postmeiotic stages. Transcriptome analysis of isolated stage-specific spermatogenic cells reveals that Sox30 controls a core postmeiotic gene expression program that initiates as early as the late meiotic cell stage. ChIP-seq analysis shows that Sox30 binds to specific DNA sequences in mouse testes, and its genomic occupancy correlates positively with expression of many postmeiotic genes including Tnp1, Hils1, Ccdc54 and Tsks These results define Sox30 as a crucial transcription factor that controls the transition from a late meiotic to a postmeiotic gene expression program and subsequent round spermatid development.
Assuntos
Regulação da Expressão Gênica/fisiologia , Meiose/fisiologia , Fatores de Transcrição SOX/metabolismo , Espermátides/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Iniciação da Transcrição Genética/fisiologia , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Elementos de Resposta/fisiologia , Fatores de Transcrição SOX/genética , Espermátides/citologia , Testículo/citologiaRESUMO
Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.
Assuntos
Cicloexenos/metabolismo , Synechococcus/metabolismo , Terpenos/metabolismo , Trifosfato de Adenosina/metabolismo , Biocombustíveis , Eritritol/análogos & derivados , Eritritol/metabolismo , Microbiologia Industrial , Cinética , Limoneno , Engenharia Metabólica , Redes e Vias Metabólicas , Modelos Biológicos , NADP/metabolismo , Fotossíntese , Proteômica , Fosfatos Açúcares/metabolismoRESUMO
Bypassing the photorespiratory pathway is regarded as a way to increase carbon assimilation and, correspondingly, biomass production in C3 crops. Here, the benefits of three published photorespiratory bypass strategies are systemically explored using a systems-modeling approach. Our analysis shows that full decarboxylation of glycolate during photorespiration would decrease photosynthesis, because a large amount of the released CO2 escapes back to the atmosphere. Furthermore, we show that photosynthesis can be enhanced by lowering the energy demands of photorespiration and by relocating photorespiratory CO2 release into the chloroplasts. The conductance of the chloroplast membranes to CO2 is a key feature determining the benefit of the relocation of photorespiratory CO2 release. Although our results indicate that the benefit of photorespiratory bypasses can be improved by increasing sedoheptulose bisphosphatase activity and/or increasing the flux through the bypass, the effectiveness of such approaches depends on the complex regulation between photorespiration and other metabolic pathways.
Assuntos
Luz , Fotossíntese/efeitos da radiação , Dióxido de Carbono/farmacologia , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Simulação por Computador , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/efeitos da radiação , Cinética , Modelos Biológicos , Fotossíntese/efeitos dos fármacosRESUMO
Multi-scale investigation from gene transcript level to metabolic activity is important to uncover plant response to environment perturbation. Here we integrated a genome-scale constraint-based metabolic model with transcriptome data to explore Arabidopsis thaliana response to both elevated and low CO2 conditions. The four condition-specific models from low to high CO2 concentrations show differences in active reaction sets, enriched pathways for increased/decreased fluxes, and putative post-transcriptional regulation, which indicates that condition-specific models are necessary to reflect physiological metabolic states. The simulated CO2 fixation flux at different CO2 concentrations is consistent with the measured Assimilation-CO2intercellular curve. Interestingly, we found that reactions in primary metabolism are affected most significantly by CO2 perturbation, whereas secondary metabolic reactions are not influenced a lot. The changes predicted in key pathways are consistent with existing knowledge. Another interesting point is that Arabidopsis is required to make stronger adjustment on metabolism to adapt to the more severe low CO2 stress than elevated CO2 . The challenges of identifying post-transcriptional regulation could also be addressed by the integrative model. In conclusion, this innovative application of multi-scale modeling in plants demonstrates potential to uncover the mechanisms of metabolic response to different conditions.
Assuntos
Arabidopsis/genética , Dióxido de Carbono/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Análise do Fluxo Metabólico , Modelos Biológicos , Arabidopsis/efeitos dos fármacos , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genéticaRESUMO
Chlorophyll a fluorescence induction (FI) kinetics, in the microseconds to the second range, reflects the overall performance of the photosynthetic apparatus. In this paper, we have developed a novel FI model, using a rule-based kinetic Monte Carlo method, which incorporates not only structural and kinetic information on PSII, but also a simplified photosystem I. This model has allowed us to successfully simulate the FI under normal or different treatment conditions, i.e., with different levels of measuring light, under 3-(3',4'-dichlorophenyl)-1,1-dimethylurea treatment, under 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone treatment, and under methyl viologen treatment. Further, using this model, we have systematically studied the mechanistic basis and factors influencing the FI kinetics. The results of our simulations suggest that (1) the J step is caused by the two-electron gate at the Q B site; (2) the I step is caused by the rate limitation of the plastoquinol re-oxidation in the plastoquinone pool. This new model provides a framework for exploring impacts of modifying not only kinetic but also structural parameters on the FI kinetics.
Assuntos
Clorofila/metabolismo , Modelos Biológicos , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila A , Simulação por Computador , Cinética , Método de Monte Carlo , Espectrometria de FluorescênciaRESUMO
BACKGROUND: Photosynthesis of reproductive organs in C3 cereals is generally regarded as important to crop yield. Whereas, photosynthetic characteristics of reproductive organs are much less understood as compared to leaf photosynthesis, mainly due to methodological limitations. To date, many indirect methods have been developed to study photosynthesis of reproductive organs and its contribution to grain yield, such as organ shading, application of herbicides and photosynthetic measurement of excised organs or tissues, which might be intrusive and cause biases. Thus, a robust and in situ approach needs to be developed. RESULTS: Here we report the development of a custom-built panicle photosynthesis chamber (P-chamber), which can be connected to standard infrared gas analyzers to study photosynthetic/respiratory rate of a rice panicle. With the P-chamber, we measured panicle photosynthetic characteristics of seven high-yielding elite japonica, japonica-indica hybrid and indica rice cultivars. Results show that, (1) rice panicle is photosynthetically active during grain filling, and there are substantial inter-cultivar variations in panicle photosynthetic and respiratory rates, no matter on a whole panicle basis, on an area basis or on a single spikelet basis; (2) among the seven testing cultivars, whole-panicle gross photosynthetic rates are 17-54 nmol s-1 5 days after heading under photon flux density (PFD) of 2000 µmol (photons) m-2 s-1, which represent some 20-38% of that of the corresponding flag leaves; (3) rice panicle photosynthesis has higher apparent CO2 compensation point, light compensation point and apparent CO2 saturation point, as compared to that of a typical leaf; (4) there is a strong and significant positive correlation between gross photosynthetic rate 5 days after heading on a single spikelet basis and grain setting rate at harvest (Pearson correlation coefficient r = 0.93, p value < 0.0001). CONCLUSIONS: Rice panicle gross photosynthesis is significant, has great natural variation, and plays an underappreciated role in grain yield formation. The P-Chamber can be used as a tool to study in situ photosynthetic characteristics of irregular non-foliar plant organs, such as ears, culms, leaf sheaths, fruits and branches, which is a relatively less explored area in current cereal breeding community.
RESUMO
The difference between the photosynthetic properties of elite and landrace Chinese rice cultivars was studied, using chlorophyll a fluorescence induction (mostly a monitor of Photosystem II activity) and I820 transmission signal (mostly a monitor of Photosystem I activity) to identify potential photosynthetic features differentiating these two groups, which show different degrees of artificial selection and grain yields. A higher fluorescence (related to PSII) IP rise phase and a lower P700(+) (related to PSI) accumulation were observed in the elite cultivars as compared to the landraces. Using these data, together with simulation data from a kinetic model of fluorescence induction, we show that the high IP rise phase and the low P700(+) accumulation can be a result of transient block on electron transfer and traffic jam on the electron acceptor side of PSI under a high [NADPH]/[NADP(+)] ratio. Considering that the ferredoxin NADP(+) reductase (FNR) transcript levels of XS134 (a representative elite cultivars) remains unaffected during the first few minutes of light/dark transition compared to Q4145 (a representative landrace cultivars), which shows a strong decline during the same time range, we propose that the FNR of elite cultivars may take more time to be inactivated in darkness. During this time the FNR enzyme can continue to reduce NADP(+) molecules, leading to initially high [NADPH]/[NADP(+)] ratio during OJIP transient. These data suggested a potential artificial selection of FNR during the breeding process of these examined elite rice cultivars.