Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neuroinflammation ; 20(1): 201, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660145

RESUMO

Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke or traumatic brain injury. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys following injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. A focal lesion was induced via surgical ablation of pial blood vessels over lying the cortical hand representation of M1 of aged female rhesus monkeys, that received intravenous infusions of either vehicle (veh) or EVs 24 h and again 14 days post-injury. The current study used this same cohort to address how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high-resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC). We compared this lesion cohort to age-matched non-lesion controls (ctr). Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EVs on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglia-spine contacts. Our results suggest that EV treatment may enhance synaptic plasticity via clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic function to support functional recovery after injury.


Assuntos
Vesículas Extracelulares , Microglia , Feminino , Animais , Macaca mulatta , Complemento C1q , Recuperação de Função Fisiológica
2.
Stroke ; 48(3): 747-753, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28232590

RESUMO

BACKGROUND AND PURPOSE: Multipotent mesenchymal stromal cell (MSC) harvested exosomes are hypothesized as the major paracrine effectors of MSCs. In vitro, the miR-17-92 cluster promotes oligodendrogenesis, neurogenesis, and axonal outgrowth. We, therefore, investigated whether the miR-17-92 cluster-enriched exosomes harvested from MSCs transfected with an miR-17-92 cluster plasmid enhance neurological recovery compared with control MSC-derived exosomes. METHODS: Rats subjected to 2 hours of transient middle cerebral artery occlusion were intravenously administered miR-17-92 cluster-enriched exosomes, control MSC exosomes, or liposomes and were euthanized 28 days post-middle cerebral artery occlusion. Histochemistry, immunohistochemistry, and Golgi-Cox staining were used to assess dendritic, axonal, synaptic, and myelin remodeling. Expression of phosphatase and tensin homolog and activation of its downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3ß in the peri-infarct region were measured by means of Western blots. RESULTS: Compared with the liposome treatment, both exosome treatment groups exhibited significant improvement of functional recovery, but miR-17-92 cluster-enriched exosome treatment had significantly more robust effects on improvement of neurological function and enhancements of oligodendrogenesis, neurogenesis, and neurite remodeling/neuronal dendrite plasticity in the ischemic boundary zone (IBZ) than the control MSC exosome treatment. Moreover, miR-17-92 cluster-enriched exosome treatment substantially inhibited phosphatase and tensin homolog, a validated miR-17-92 cluster target gene, and subsequently increased the phosphorylation of phosphatase and tensin homolog downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3ß compared with control MSC exosome treatment. CONCLUSIONS: Our data suggest that treatment of stroke with tailored exosomes enriched with the miR-17-92 cluster increases neural plasticity and functional recovery after stroke, possibly via targeting phosphatase and tensin homolog to activate the PI3K/protein kinase B/mechanistic target of rapamycin/glycogen synthase kinase 3ß signaling pathway.


Assuntos
Exossomos/genética , MicroRNAs/genética , Família Multigênica , Plasticidade Neuronal , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/terapia , Animais , Células Cultivadas , Modelos Animais de Doenças , Masculino , Células-Tronco Mesenquimais/citologia , Bainha de Mielina/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Wistar , Acidente Vascular Cerebral/genética
3.
Glia ; 62(1): 1-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24272702

RESUMO

Astrocytes have not been a major therapeutic target for the treatment of stroke, with most research emphasis on the neuron. Given the essential role that astrocytes play in maintaining physiological function of the central nervous system and the very rapid and sensitive reaction astrocytes have in response to cerebral injury or ischemic insult, we propose to replace the neurocentric view for treatment with a more nuanced astrocytic centered approach. In addition, after decades of effort in attempting to develop neuroprotective therapies, which target reduction of the ischemic lesion, there are no effective clinical treatments for stroke, aside from thrombolysis with tissue plasminogen activator, which is used in a small minority of patients. A more promising therapeutic approach, which may affect nearly all stroke patients, may be in promoting endogenous restorative mechanisms, which enhance neurological recovery. A focus of efforts in stimulating recovery post stroke is the use of exogenously administered cells. The present review focuses on the role of the astrocyte in mediating the brain network, brain plasticity, and neurological recovery post stroke. As a model to describe the interaction of a restorative cell-based therapy with astrocytes, which drives recovery from stroke, we specifically highlight the subacute treatment of stroke with multipotent mesenchymal stromal cell therapy.


Assuntos
Astrócitos/fisiologia , Terapia Baseada em Transplante de Células e Tecidos , Acidente Vascular Cerebral/terapia , Animais , Humanos , Acidente Vascular Cerebral/patologia
4.
Stem Cells ; 31(12): 2737-46, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23630198

RESUMO

To test, in vivo, the hypothesis that exosomes from multipotent mesenchymal stromal cells (MSCs) mediate microRNA 133b (miR-133b) transfer which promotes neurological recovery from stroke, we used knockin and knockdown technologies to upregulate or downregulate the miR-133b level in MSCs (miR-133b(+) MSCs or miR-133b(-) MSCs) and their corresponding exosomes, respectively. Rats were subjected to middle cerebral artery occlusion (MCAo) and were treated with naïve MSCs, miR-133b(+) MSCs, or miR-133b(-) MSC at 1 day after MCAo. Compared with controls, rats receiving naïve MSC treatment significantly improved functional recovery and exhibited increased axonal plasticity and neurite remodeling in the ischemic boundary zone (IBZ) at day 14 after MCAo. The outcomes were significantly enhanced with miR-133b(+) MSC treatment, and were significantly decreased with miR-133b(-) MSC treatment, compared to naïve MSC treatment. The miR-133b level in exosomes collected from the cerebral spinal fluid was significantly increased after miR-133b(+) MSC treatment, and was significantly decreased after miR-133b(-) MSC treatment at day 14 after MCAo, compared to naïve MSC treatment. Tagging exosomes with green fluorescent protein demonstrated that exosomes-enriched extracellular particles were released from MSCs and transferred to adjacent astrocytes and neurons. The expression of selective targets for miR-133b, connective tissue growth factor and ras homolog gene family member A, was significantly decreased in the IBZ after miR-133b(+) MSC treatment, while their expression remained at similar elevated levels after miR-133b(-) MSC treatment, compared to naïve MSC treatment. Collectively, our data suggest that exosomes from MSCs mediate the miR-133b transfer to astrocytes and neurons, which regulate gene expression, subsequently benefit neurite remodeling and functional recovery after stroke.


Assuntos
Exossomos/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/administração & dosagem , Acidente Vascular Cerebral/terapia , Animais , Encéfalo/patologia , Células Cultivadas , Exossomos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
5.
Stem Cells ; 30(7): 1556-64, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22605481

RESUMO

Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes.


Assuntos
Exossomos/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Neuritos/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Animais , Células Cultivadas , Exossomos/ultraestrutura , Masculino , Células-Tronco Mesenquimais/ultraestrutura , Microscopia Eletrônica de Transmissão , Neuritos/ultraestrutura , Neurogênese/genética , Neurônios/ultraestrutura , Ratos , Ratos Wistar
6.
Res Sq ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292805

RESUMO

Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys post-injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. The current study addresses how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba-1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC) of monkeys with intravenous infusions of either vehicle (veh) or EVs post-injury. We compared this lesion cohort to aged-matched non-lesion controls. Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EV on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglial-spine contacts. Our results provided evidence that EV treatment facilitated synaptic plasticity by enhancing clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic connectivity to support functional recovery after injury.

7.
Neurobiol Dis ; 45(2): 804-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22115941

RESUMO

As a thrombolytic agent, application of recombinant tissue plasminogen activator (tPA) to ischemic stroke is limited by the narrow time window and side effects on brain edema and hemorrhage. This study examined whether tPA, administered by intranasal delivery directly targeting the brain and spinal cord, provides therapeutic benefit during the subacute phase after stroke. Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion (MCAo). Animals were treated intranasally with saline, 60 µg or 600 µg recombinant human tPA at 7 and 14days after MCAo (n=8/group), respectively. An adhesive-removal test and a foot-fault test were used to monitor functional recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the corticorubral tract (CRT) and the corticospinal tract (CST). Naive rats (n=6) were employed as normal control. Animals were euthanized 8 weeks after stroke. Compared with saline treated animals, significant functional improvements were evident in rats treated with 600 µg tPA (p<0.05), but not in 60 µg tPA treated rats. Furthermore, 600 µg tPA treatment significantly enhanced both CRT and CST sprouting originating from the contralesional cortex into the denervated side of the red nucleus and cervical gray matter compared with control group (p<0.01), respectively. The behavioral outcomes were highly correlated with CRT and CST axonal remodeling. Our data suggest that delayed tPA intranasal treatment provides therapeutic benefits for neurological recovery after stroke by, at least in part, promoting neuronal remodeling in the brain and spinal cord.


Assuntos
Axônios/efeitos dos fármacos , Fibrinolíticos/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/administração & dosagem , Administração Intranasal , Animais , Axônios/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/patologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/patologia
8.
Stroke ; 42(2): 459-64, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21212396

RESUMO

BACKGROUND AND PURPOSE: Bone marrow stromal cells (BMSC) decrease neurological deficits in rodents after stroke and concomitantly induce extensive neurite remodeling in the brain, which highly correlates with the improvement of neurological function. We investigated the effects of endogenous tissue plasminogen activator (tPA) on neurite remodeling after BMSC treatment. METHODS: Adult C57BL/6 wild-type (WT) mice and tPA knockout (tPA(-/-)) mice were subjected to middle cerebral artery occlusion, followed by an injection of 1×10(6) BMSC (n=18) or phosphate-buffered saline (n=18) into the tail vein 24 hours later. Behavioral tests were performed at 3, 7, and 14 days after middle cerebral artery occlusion. Animals were euthanized at 14 days after stroke. RESULTS: The effects of BMSC on functional recovery depended on presence or absence of tPA, even after adjusting for imbalanced stroke severity. BMSC significantly improve functional recovery in WT mice compared to WT controls but show no beneficial effect in the tPA(-/-) mice compared to tPA(-/-) controls. Axonal density and synaptophysin-positive areas along the ischemic boundary zone of the cortex and striatum in WT mice are significantly higher than in the tPA(-/-) mice. BMSC treatment significantly increases tPA protein level and activity only in WT mice. CONCLUSIONS: Our results suggest that endogenous tPA promotes BMSC-induced neurite outgrowth and may contribute to functional recovery after stroke.


Assuntos
Transplante de Medula Óssea , Neuritos/fisiologia , Acidente Vascular Cerebral/cirurgia , Ativador de Plasminogênio Tecidual/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Transplante de Medula Óssea/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/patologia , Células Estromais/fisiologia
9.
Neural Regen Res ; 16(5): 939-943, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33229733

RESUMO

Stroke remains the leading cause of long-term disability. Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor cortex. As the only direct descending motor pathway, the corticospinal tract (CST) is the primary pathway to innervate spinal motor neurons, and thus, forms the neuroanatomical basis to control the peripheral muscles for voluntary movements. Here, we review evidence from both experimental animals and stroke patients, regarding CST axonal damage, functional contribution of CST axonal integrity and remodeling to neurological recovery, and therapeutic approaches aimed to enhance CST axonal remodeling after stroke. The new insights gleaned from preclinical and clinical studies may encourage the development of more rational therapeutics with a strategy targeted to promote axonal rewiring for corticospinal innervation, which will significantly impact the current clinical needs of subacute and chronic stroke treatment.

10.
J Cereb Blood Flow Metab ; 41(1): 92-104, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987011

RESUMO

Our previous studies demonstrated that axonal remodeling of the corticospinal tract (CST) contributes to neurological recovery after stroke in rodents. The present study employed a novel non-invasive peripheral approach, to over-express tPA in denervated spinal motor neurons via recombinant adeno-associated virus (AAV) intramuscular injection in transgenic mice subjected to permanent middle cerebral artery occlusion (MCAo), in which the CST axons are specifically and completely labeled with yellow fluorescent protein (YFP). One day after surgery, mice were randomly selected to receive saline, AAV5-RFP, or tPA (1 × 1010 viral particles) injected into the stroke-impaired forelimb muscles (n = 10/group). Functional deficits and recovery were monitored with foot-fault and single pellet reaching tests. At day 28 after MCAo, mice received intramuscular injection of PRV-614-mRFP (1.52 × 107 pfu) as above, and were euthanized four days later. Compared with saline or AAV-RFP-treated mice, AAV-tPA significantly enhanced behavioral recovery (p < 0.01, both tests), as well as increased CST axonal density in the denervated gray matter of the cervical cord (p < 0.001), and RFP-positive pyramidal neurons in both ipsilesional and contralesional cortices (p < 0.001). Behavioral outcomes were significantly correlated to neural remodeling (p < 0.05). Our results provide a fundamental basis for the development of therapeutic approaches aimed at promoting corticospinal innervation for stroke treatment.


Assuntos
Neurônios Motores/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Acidente Vascular Cerebral/fisiopatologia
11.
J Cereb Blood Flow Metab ; 41(10): 2583-2592, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853408

RESUMO

Plasminogen is involved in the process of angiogenesis; however, the underlying mechanism is unclear. Here, we investigated the potential contribution of plasmin/plasminogen in mediating angiogenesis and thereby contributing to functional recovery post-stroke. Wild-type plasminogen naive (Plg+/+) mice and plasminogen knockout (Plg-/-) mice were subjected to unilateral permanent middle cerebral artery occlusion (MCAo). Blood vessels were labeled with FITC-dextran. Functional outcomes, and cerebral vessel density were compared between Plg+/+ and Plg-/- mice at different time points after stroke. We found that Plg-/- mice exhibited significantly reduced functional recovery, associated with significantly decreased vessel density in the peri-infarct area in the ipsilesional cortex compared with Plg+/+ mice. In vitro, cerebral endothelial cells harvested from Plg-/- mice exhibited significantly reduced angiogenesis assessed using tube formation assay, and migration, as evaluated using Scratch assays, compared to endothelial cells harvested from Plg+/+ mice. In addition, using Western blots, expression of thrombospondin (TSP)-1 and TSP-2 were increased after MCAo in the Plg-/- group compared to Plg+/+ mice, especially in the ipsilesional side of brain. Taken together, our data suggest that plasmin/plasminogen down-regulates the expression level of TSP-1 and TSP-2, and thereby promotes angiogenesis in the peri-ischemic brain tissue, which contributes to functional recovery after ischemic stroke.


Assuntos
Neovascularização Patológica/fisiopatologia , Plasminogênio/deficiência , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Masculino , Camundongos
12.
J Cereb Blood Flow Metab ; 41(5): 1131-1144, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32811262

RESUMO

MiR-17-92 cluster enriched exosomes derived from multipotent mesenchymal stromal cells (MSCs) increase functional recovery after stroke. Here, we investigate the mechanisms underlying this recovery. At 24 h (h) post transient middle cerebral artery occlusion, rats received control liposomes or exosomes derived from MSCs infected with pre-miR-17-92 expression lentivirus (Exo-miR-17-92+) or control lentivirus (Exo-Con) intravenously. Compared to the liposomes, exosomes significantly reduced the intracortical microstimulation threshold current of the contralateral cortex for evoking impaired forelimb movements (day 21), increased the neurite and myelin density in the ischemic boundary area, and contralesional axonal sprouting into the caudal forelimb area of ipsilateral side and in the denervated spinal cord (day 28), respectively. The Exo-miR-17-92+ further enhanced axon-myelin remodeling and electrophysiological recovery compared with the EXO-Con. Ex vivo cultured rat brain slice data showed that myelin and neuronal fiber density were significantly increased by Exo-miR-17-92+, while significantly inhibited by application of the PI3K/Akt/mTOR pathway inhibitors. Our studies suggest that the miR-17-92 cluster enriched MSC exosomes enhanced neuro-functional recovery of stroke may be attributed to an increase of axonal extension and myelination, and this enhanced axon-myelin remodeling may be mediated in part via the activation of the PI3K/Akt/mTOR pathway induced by the downregulation of PTEN.


Assuntos
Infarto da Artéria Cerebral Média/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Neurogênese/fisiologia , Neurônios/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Administração Intravenosa , Animais , Axônios/metabolismo , Regulação para Baixo , Fenômenos Eletrofisiológicos/genética , Exossomos/metabolismo , Infarto da Artéria Cerebral Média/complicações , Lipossomos/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , MicroRNAs/administração & dosagem , MicroRNAs/metabolismo , Modelos Animais , Bainha de Mielina/metabolismo , Neuritos/fisiologia , Neurogênese/genética , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/ultraestrutura , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
13.
Cell Transplant ; 26(2): 243-257, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-27677799

RESUMO

We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) that overexpress microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here we investigated whether exosomes isolated from miR-133b-overexpressing MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 h of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered saline (PBS) and were sacrificed 28 days after MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen- and glucose-deprived (OGD) conditions were incubated with exosomes harvested from naive MSCs (Ex-Naive), miR-133b downregulated MSCs (Ex-miR-133b-), and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b- significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressing MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary release of neurite-promoting exosomes from astrocytes.


Assuntos
Astrócitos/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/terapia , Animais , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/genética , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/metabolismo
14.
Neurochem Int ; 111: 69-81, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27539657

RESUMO

Multipotent human bone marrow derived mesenchymal stem cells (hMSCs) improve functional outcome after experimental traumatic brain injury (TBI). The present study was designed to investigate whether systemic administration of cell-free exosomes generated from hMSCs cultured in 2-dimensional (2D) conventional conditions or in 3-dimensional (3D) collagen scaffolds promote functional recovery and neurovascular remodeling in rats after TBI. Wistar rats were subjected to TBI induced by controlled cortical impact; 24 h later tail vein injection of exosomes derived from hMSCs cultured under 2D or 3D conditions or an equal number of liposomes as a treatment control were performed. The modified Morris water maze, neurological severity score and footfault tests were employed to evaluate cognitive and sensorimotor functional recovery. Animals were sacrificed at 35 days after TBI. Histological and immunohistochemical analyses were performed for measurements of lesion volume, neurovascular remodeling (angiogenesis and neurogenesis), and neuroinflammation. Compared with liposome-treated control, exosome-treatments did not reduce lesion size but significantly improved spatial learning at 33-35 days measured by the Morris water maze test, and sensorimotor functional recovery, i.e., reduced neurological deficits and footfault frequency, observed at 14-35 days post injury (p < 0.05). Exosome treatments significantly increased the number of newborn endothelial cells in the lesion boundary zone and dentate gyrus, and significantly increased the number of newborn mature neurons in the dentate gyrus as well as reduced neuroinflammation. Exosomes derived from hMSCs cultured in 3D scaffolds provided better outcome in spatial learning than exosomes from hMSCs cultured in the 2D condition. In conclusion, hMSC-generated exosomes significantly improve functional recovery in rats after TBI, at least in part, by promoting endogenous angiogenesis and neurogenesis and reducing neuroinflammation. Thus, exosomes derived from hMSCs may be a novel cell-free therapy for TBI, and hMSC-scaffold generated exosomes may selectively enhance spatial learning.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Exossomos/metabolismo , Células-Tronco Mesenquimais , Recuperação de Função Fisiológica/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Modelos Animais de Doenças , Humanos , Masculino , Neurogênese/fisiologia , Ratos Wistar
15.
J Neurosurg ; 122(4): 856-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25594326

RESUMO

OBJECT: Transplanted multipotent mesenchymal stromal cells (MSCs) improve functional recovery in rats after traumatic brain injury (TBI). In this study the authors tested a novel hypothesis that systemic administration of cell-free exosomes generated from MSCs promotes functional recovery and neurovascular remodeling in rats after TBI. METHODS: Two groups of 8 Wistar rats were subjected to TBI, followed 24 hours later by tail vein injection of 100 µg protein of exosomes derived from MSCs or an equal volume of vehicle (phosphate-buffered saline). A third group of 8 rats was used as sham-injured, sham-treated controls. To evaluate cognitive and sensorimotor functional recovery, the modified Morris water maze, modified Neurological Severity Score, and foot-fault tests were performed. Animals were killed at 35 days after TBI. Histopathological and immunohistochemical analyses were performed for measurements of lesion volume, neurovascular remodeling (angiogenesis and neurogenesis), and neuroinflammation. RESULTS: Compared with the saline-treated group, exosome-treated rats with TBI showed significant improvement in spatial learning at 34-35 days as measured by the modified Morris water maze test (p < 0.05), and sensorimotor functional recovery (i.e., reduced neurological deficits and foot-fault frequency) was observed at 14-35 days postinjury (p < 0.05). Exosome treatment significantly increased the number of newly generated endothelial cells in the lesion boundary zone and dentate gyrus and significantly increased the number of newly formed immature and mature neurons in the dentate gyrus as well as reducing neuroinflammation. CONCLUSIONS: The authors demonstrate for the first time that MSC-generated exosomes effectively improve functional recovery, at least in part, by promoting endogenous angiogenesis and neurogenesis and by reducing inflammation in rats after TBI. Thus, MSC-generated exosomes may provide a novel cell-free therapy for TBI and possibly for other neurological diseases.


Assuntos
Vasos Sanguíneos/patologia , Lesões Encefálicas/terapia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais , Plasticidade Neuronal , Células-Tronco Pluripotentes/transplante , Animais , Contagem de Células , Cognição/fisiologia , Proteína Duplacortina , Injeções Intravenosas , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Sensação/fisiologia
16.
Front Cell Neurosci ; 8: 377, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426026

RESUMO

Cell-based therapy, e.g., multipotent mesenchymal stromal cell (MSC) treatment, shows promise for the treatment of various diseases. The strong paracrine capacity of these cells and not their differentiation capacity, is the principal mechanism of therapeutic action. MSCs robustly release exosomes, membrane vesicles (~30-100 nm) originally derived in endosomes as intraluminal vesicles, which contain various molecular constituents including proteins and RNAs from maternal cells. Contained among these constituents, are small non-coding RNA molecules, microRNAs (miRNAs), which play a key role in mediating biological function due to their prominent role in gene regulation. The release as well as the content of the MSC generated exosomes are modified by environmental conditions. Via exosomes, MSCs transfer their therapeutic factors, especially miRNAs, to recipient cells, and therein alter gene expression and thereby promote therapeutic response. The present review focuses on the paracrine mechanism of MSC exosomes, and the regulation and transfer of exosome content, especially the packaging and transfer of miRNAs which enhance tissue repair and functional recovery. Perspectives on the developing role of MSC mediated transfer of exosomes as a therapeutic approach will also be discussed.

17.
J Cereb Blood Flow Metab ; 33(11): 1711-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23963371

RESUMO

Here, for the first time, we test a novel hypothesis that systemic treatment of stroke with exosomes derived from multipotent mesenchymal stromal cells (MSCs) promote neurovascular remodeling and functional recovery after stroke in rats. Adult male Wistar rats were subjected to 2 hours of middle cerebral artery occlusion (MCAo) followed by tail vein injection of 100 µg protein from MSC exosome precipitates or an equal volume of vehicle phosphate-buffered saline (PBS) (n=6/group) 24 hours later. Animals were killed at 28 days after stroke and histopathology and immunohistochemistry were employed to identify neurite remodeling, neurogenesis, and angiogenesis. Systemic administration of MSC-generated exosomes significantly improved functional recovery in stroke rats compared with PBS-treated controls. Axonal density and synaptophysin-positive areas were significantly increased along the ischemic boundary zone of the cortex and striatum in MCAo rats treated with exosomes compared with PBS control. Exosome treatment significantly increased the number of newly formed doublecortin (a marker of neuroblasts) and von Willebrand factor (a marker of endothelial cells) cells. Our results suggest that intravenous administration of cell-free MSC-generated exosomes post stroke improves functional recovery and enhances neurite remodeling, neurogenesis, and angiogenesis and represents a novel treatment for stroke.


Assuntos
Exossomos/transplante , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/terapia , Animais , Comportamento Animal/fisiologia , Proteína Duplacortina , Masculino , Células-Tronco Mesenquimais/fisiologia , Neuritos/fisiologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-23990847

RESUMO

Skimmin is one of the major pharmacologically active molecules present in Hydrangea paniculata, a medical herb used in the traditional Chinese medicine as an anti-inflammatory agent. In the current study, we attempted to investigate its renoprotective activity and underlying mechanisms in a rat model of membranous glomerulonephritis induced by cationic bovine serum albumin (c-BSA). Sprague-Dawley (SD) rats were divided into five groups, including normal control, model control, Mycophenolate Mofetil-treated group, and two skimming-treated groups (15 mg/kg and 30 mg/kg). Our research showed that treatment with skimmin significantly reduced the levels of blood urea nitrogen (BUN), urinary albumin excretion (UAE), and serum creatinine (Scr) as compared with model control after experimental induction of membranous glomerulonephritis (P < 0.01). Moreover, glomerular hypercellularity, tubulointerstitial injury, and glomerular deposition of IgG were less intense after skimmin treatment. By immunochemistry analysis, we demonstrated that skimmin could significantly inhibit interleukin-1 ß (IL1 ß ) and IL-6 expression (P < 0.05), reduce the loss of nephrin and podocin, and suppress the infiltration of renal interstitium by CD3-positive T cell and CD20-positive B cell. These results suggest that treatment with skimmin can significantly improve renal function and suppress the IgG deposition as well as the development of glomerular lesions in a rat model of membranous glomerulonephritis.

19.
Neurosci Lett ; 542: 81-6, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23499476

RESUMO

Multipotent mesenchymal stromal cells (MSCs) decrease the expression of transforming growth factor ß1 (TGFß1) in astrocytes and subsequently decrease astrocytic plasminogen activator inhibitor 1 (PAI-1) level in an autocrine manner. Since activated microglia/macrophages are also a source of TGFß1 after stroke, we therefore tested whether MSCs regulate TGFß1 expression in microglia/macrophages and subsequently alters PAI-1 expression after ischemia. TGFß1 and its downstream effector phosphorylated SMAD 2/3 (p-SMAD 2/3) were measured in mice subjected to middle cerebral artery occlusion (MCAo). MSC treatment significantly decreased TGFß1 protein expression in both astrocytes and microglia/macrophages in the ischemic boundary zone (IBZ) at day 14 after stroke. However, the p-SMAD 2/3 was only detected in astrocytes and decreased after MSC treatment. In vitro, RT-PCR results showed that the TGFß1 mRNA level was increased in both astrocytes and microglia/macrophages in an astrocyte-microglia/macrophage co-culture system after oxygen-glucose deprived (OGD) treatment. MSCs treatment significantly decreased the above TGFß1 mRNA level under OGD conditions, respectively. OGD increased the PAI-1 mRNA in astrocytes in the astrocyte-microglia/macrophage co-culture system, and MSC administration significantly decreased this level. PAI-1 mRNA was very low in microglia/macrophages compared with that in astrocytes under different conditions. Western blot results also verified that MSC administration significantly decreased p-SMAD 2/3 and PAI-1 level in astrocytes in astrocyte-microglia/macrophage co-culture system under OGD conditions. Our in vivo and in vitro data, in concert, suggest that MSCs decrease TGFß1 expression in microglia/macrophages in the IBZ which contribute to the down-regulation of PAI-1 level in astrocytes.


Assuntos
Astrócitos/metabolismo , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais , Microglia/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Acidente Vascular Cerebral/terapia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Hipóxia Celular , Técnicas de Cocultura , Regulação para Baixo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/complicações , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
20.
J Cereb Blood Flow Metab ; 31(11): 2181-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21829213

RESUMO

Multipotent mesenchymal stromal cells (MSCs) increase tissue plasminogen activator (tPA) activity in astrocytes of the ischemic boundary zone, leading to increased neurite outgrowth in the brain. To probe the mechanisms that underlie MSC-mediated activation of tPA, we investigated the morphogenetic gene, sonic hedgehog (Shh) pathway. In vitro oxygen and glucose deprivation and coculture of astrocytes and MSCs were used to mimic an in vivo ischemic condition. Both real-time-PCR and western blot showed that MSC coculture significantly increased the Shh level and concomitantly increased tPA and decreased plasminogen activator inhibitor 1 (PAI-1) levels in astrocytes. Inhibiting the Shh signaling pathway with cyclopamine blocked the increase of tPA and the decrease of PAI-1 expression in astrocytes subjected to MSC coculture or recombinant mouse Shh (rm-Shh) treatment. Both MSCs and rm-Shh decreased the transforming growth factor-ß1 level in astrocytes, and the Shh pathway inhibitor cyclopamine reversed these decreases. Both Shh-small-interfering RNA (siRNA) and Glil-siRNA downregulated Shh and Gli1 (a key mediator of the Shh transduction pathway) expression in cultured astrocytes and concomitantly decreased tPA expression and increased PAI-1 expression in these astrocytes after MSC or rm-Shh treatment. Our data indicate that MSCs increase astrocytic Shh, which subsequently increases tPA expression and decreases PAI-1 expression after ischemia.


Assuntos
Astrócitos/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Multipotentes/fisiologia , Serpina E2/biossíntese , Acidente Vascular Cerebral , Ativador de Plasminogênio Tecidual/biossíntese , Animais , Astrócitos/citologia , Astrócitos/patologia , Técnicas de Cultura de Células , Hipóxia Celular , Técnicas de Cocultura , Meios de Cultura , Regulação para Baixo , Glucose/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Oxigênio/metabolismo , Receptor Cross-Talk , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa