RESUMO
Inner Mongolia autonomous region of China and Mongolia are the primary regions where Chinese and Mongolian medicine and its medicinal plant resources are distributed. In this study, 133 families, 586 genera, and 1 497 species of medicinal plants in Inner Mongolia as well as 62 families, 261 genera, and 467 species of medicinal plants in Mongolia were collected through field investigation, specimen collection and identification, and literature research. And the species, geographic distribution, and influencing factors of the above medicinal plants were analyzed. The results revealed that there were more plant species utilized for medicinal reasons in Inner Mongolia than in Mongolia. Hotspots emerged in Hulunbuir, Chifeng, and Tongliao of Inner Mongolia, while there were several hotspots in Eastern province, Sukhbaatar province, Gobi Altai province, Bayankhongor province, Middle Gobi province, Kobdo province, South Gobi province, and Central province of Mongolia. The interplay of elevation and climate made a non-significant overall contribution to the diversity of plant types in Inner Mongolia and Mongolia. The contribution of each factor increased significantly when the vegetation types of Inner Mongolia and Mongolia were broadly divided into forest, grassland and desert. Thus, the distribution of medicinal plant resources and vegetation cover were jointly influenced by a variety of natural factors such as topography, climate and interactions between species, and these factors contributed to and constrained each other. This study provided reference for sustainable development and rational exploitation of medicinal plant resources in future.
Assuntos
Humanos , Plantas Medicinais , Mongólia , Clima , Medicina Tradicional da Mongólia , ChinaRESUMO
Abstract Double-hit lymphoma (DHL) is a high-grade B-cell lymphoma with MYC and BCL-2/BCL-6 rearrangement, which is a invasive disease with a poor prognosis. FISH is the most important diagnostic method. There is no standard protocol for this disease yet. New therapeutic approaches including targeted therapy,checkpoint inhibitors and chimeric antigen receptor T-cell therapy are changing the paradigm of treatment for DHL. This review summarizes new developments in diagnosis and treatment of double-hit lymphoma.
Assuntos
Humanos , Predisposição Genética para Doença , Imunoterapia Adotiva , Linfoma de Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-6 , Proteínas Proto-Oncogênicas c-mycRESUMO
Objective: To explore effects of histone deacetylase inhibitor Belinostat on the immunologic function of dendritic cells (DC) and its possible mechanism. Methods: Cultured mouse bone marrow-derived DC from C57BL/6 mouse in vitro. The experiments were divided into 0, 50, 100 nmol/L Belinostat + immature DC (imDC) group, and 0, 50, 100 nmol/L Belinostat mature DC (mDC). The changes of the ultrastructure of DC were observed by transmission electron microscope (TEM). Immunophenotype and CCR7 expression rate were detected by FCM, and the migration rate was observed by chemotaxis assay. The proliferation of lymphocytes stimulated by different DC was detected by mixed lymphocyte culture reaction. The cytokines in the culture supernatant, including TNF-α, IL-12 and IL-10, were examined by ELISA. RQ-PCR was used to examine the relative expression of mRNA in RelB. Results: Successful cultured and identified the qualified imDC and mDC. Belinostat decreased the expression of CCR7 on imDC [(25.82±7.25)% vs (50.44±5.61)% and (18.71±2.00)% vs (50.44±5.61)%], meanwhile increased the rate on mDC [(71.14±1.96)% vs (64.90±1.47)%]. Chemotaxis assay showed that the migration rate of Belinostat+imDC and Belinostat+mDC group were both decreased, but the difference in imDC was not significant. T lymphocyte proliferation rate stimulated by 100 nmol/L Belinostat+imDC group was lower than imDC group in condition irritation cell∶reaction cell=1∶2 [(227.09±13.49)% vs (309.49±53.69)%]. Belinostat significantly suppressed the secretion of cytokines TNF-α, IL-12 and IL-10 (all P<0.01). The relative expression of mRNA in RelB was slightly decreased in Belinostat+imDC and Belinostat+mDC group (all P<0.05). Conclusion: Belinostat could effectly suppress DC maturation and regulate immune tolerance of DC, which may be due to the down-regulation of mRNA level of RelB in DC.