Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Integr Plant Biol ; 65(3): 656-673, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36223073

RESUMO

Moderate stimuli in mitochondria improve wide-ranging stress adaptability in animals, but whether mitochondria play similar roles in plants is largely unknown. Here, we report the enhanced stress adaptability of S-type cytoplasmic male sterility (CMS-S) maize and its association with mild expression of sterilizing gene ORF355. A CMS-S maize line exhibited superior growth potential and higher yield than those of the near-isogenic N-type line in saline fields. Moderate expression of ORF355 induced the accumulation of reactive oxygen species and activated the cellular antioxidative defense system. This adaptive response was mediated by elevation of the nicotinamide adenine dinucleotide concentration and associated metabolic homeostasis. Metabolome analysis revealed broad metabolic changes in CMS-S lines, even in the absence of salinity stress. Metabolic products associated with amino acid metabolism and galactose metabolism were substantially changed, which underpinned the alteration of the antioxidative defense system in CMS-S plants. The results reveal the ORF355-mediated superior stress adaptability in CMS-S maize and might provide an important route to developing salt-tolerant maize varieties.


Assuntos
Infertilidade das Plantas , Zea mays , Zea mays/genética , Infertilidade das Plantas/genética , Mitocôndrias/metabolismo , Citoplasma/metabolismo , Homeostase
2.
Ecotoxicol Environ Saf ; 202: 110887, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585488

RESUMO

Chemical immobilization of heavy metals is a simple, low-cost, and environment-friendly technology for remediation of heavy metals contaminated soils. However, changes in environmental conditions, such as water management, acid deposition, temperature fluctuation, etc., might result in release of metal ions from the fixation sites, and the long-term stability of immobilization remediation is unclear. This study attempted to investigate the impact of water management strategies (wetting-drying cycle and dry cycle) on the stability of heavy metal immobilization by one-time application of biochar during 3 consecutive years of rice-wheat crop in Cu/Cd-contaminated soil. The transformation and accumulation of Cd and Cu in soil-crop system and the morphololgy and composition of biochar were analyzed. The results revealed that wetting-drying cycle and drying treatments reduced the contents of available Cd and Cu in soil by 15.9%-17.7% and 23.9%-31.5% and by 19.8%-62.7% and 16.1%-65.0%, as well as increased soil pH by 0.11-0.31 and 0.17-0.56, respectively. In the wetting-drying cycle treatment, biochar was more favorable for decrease in Cd and Cu accumulation in crop, when compared with that in dry treatment; however, the differences were insignificant in the subsequent years. Although the different water management strategies had no obvious effect on the soil total C, physicochemical analysis of the biochar collected after pot experiments indicated that the obvious structural decomposition of biochar in the drying treatment may have resulted in the release of heavy metals immobilized in biochar. These findings help in better understanding of the long-term immobilization mechanism of biochar in soil-plant system.


Assuntos
Agricultura/métodos , Cádmio/análise , Cobre/análise , Poluentes do Solo/análise , Carvão Vegetal/química , Poluição Ambiental/análise , Metais Pesados/análise , Oryza/química , Rotação , Solo/química , Triticum , Água/análise , Abastecimento de Água
3.
Water Sci Technol ; 81(1): 29-39, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32293586

RESUMO

Magnetic laccase nanoflowers (MNFs-Lac) were successfully prepared through encapsulating Fe3O4 magnetic nanoparticles into the interior of laccase nanoflowers by grafting N-(phosphonomethyl)iminodiacetic acid (PMIDA) as an interconnecting bridge between the magnetic nanoparticles and copper ions. The characterizations by scanning electron microscopy and transmission electron microscopy showed that MNFs-Lac were spherical, porous and flower-like crystals with diameters of ∼10 µm, and Fe3O4 nanoparticles were encapsulated in the interior of MNFs-Lac evenly. The enzymatic activity and reusability of MNFs-Lac were evaluated based on the degradation efficiency for malachite green (MG). The degradation parameters, concerning initial MG concentration, dosage of MNFs-Lac, reaction temperature, pH value and reaction time, were optimized through single-factor experiments. Under the optimal conditions, 25 mg·L-1 MG can be degraded almost completely by 1.5 g·L-1 MNFs-Lac within 15 min. When the MNFs-Lac were reused for 18 times, the degradation efficiency of MG was still as high as 90%. These results suggested that the modified preparation method improved greatly the reusability of MNFs-Lac, which made them more suitable to degrade MG in a water environment.


Assuntos
Lacase , Nanopartículas de Magnetita , Enzimas Imobilizadas , Corantes de Rosanilina
4.
Nano Lett ; 18(10): 6301-6311, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30240228

RESUMO

Efficient small interfering RNA (siRNA) delivery in the presence of serum is of crucial importance for effective gene therapy. Fluorinated vectors are considered to be attractive candidates for siRNA-mediated gene therapy because of their delivery efficacy in serum-containing media. However, the mechanisms driving the superior gene transfection behavior of fluorinated vectors are still not well-understood, and comprehensive investigations are warranted. Herein, we fabricated a library of perfluorooctanoyl fluoride-fluorinated (PFF-fluorinated) oligoethylenimines (f xOEIs, x is the PFF:OEI feeding ratio), which can readily form nanoassemblies (f xOEI NAs) capable of efficient siRNA delivery in cells cultured in medium both devoid of and supplemented with fetal bovine serum (FBS). The gene silencing test in serum-containing medium revealed that the f0.7OEI/siRNA NAs achieved a luciferase silencing of ∼88.4% in Luc-HeLa cells cultured in FBS-containing medium, which was almost 2-fold greater than the silencing efficacy of siRNA delivered by the commercially available vector Lipo 2000 (∼48.8%). High levels of apolipoprotein B silencing were also achieved by f0.7OEI/siRNA NAs in vivo. For an assessment of the underlying mechanisms of the efficacy of gene silencing of fluorinated vectors, two alkylated OEIs, aOEI-C8 and aOEI-C12, were fabricated as controls with similar molecular structure and hydrophobicity to that of f0.7OEI, respectively. In vitro investigations showed that the superior gene delivery exhibited by f0.7OEI NAs derived from the potent endosomal disruption capability of fluorinated vectors in the presence of serum, which was essentially attributed to the serum protein adsorption resistance of the f0.7OEI NAs. Therefore, this work provides an innovative approach to siRNA delivery as well as insights into fluorine-associated serum resistance.

5.
BMC Plant Biol ; 17(1): 140, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28806927

RESUMO

BACKGROUND: Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. RESULTS: To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. CONCLUSIONS: The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal/genética , Zea mays/fisiologia , Marcadores Genéticos , Zea mays/genética
6.
Drug Dev Ind Pharm ; 43(10): 1648-1655, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28541760

RESUMO

α-Chymotrypsin (α-CT) and trypsin are important components of the enzymatic barrier. They could degrade the therapeutic proteins and peptides, inhibit their activity consequently, and thereby reduce their oral bioavailability. Acidic agents, as one type of indirect protease inhibitors, have shown proof of concept in clinical trials. We report here the inactivated proteases due to acid influence can be reactivated immediately by environmental pH recovery regardless of how long the inactivation last. To keep the inactivation time of proteases for 4-5 h, we designed and prepared a sustained-release tablet containing citric acid (CA) which can effectively reduce the pH below 5.0 and maintain it for 5 h in the dissolution-reaction medium. The activity of α-CT and trypsin was quantified by analyzing the residual amount of their respective substrates BTEE and TAME. More than 80% of the substrates were survived in 5.0 h of incubation, whereas the common tablet inhibited the proteases activity for only two hours in the same experimental medium. It indicates that the sustained-release tablet loaded with CA can efficiently inhibit the α-CT and trypsin activity longer than the common tablet. The results will be beneficial for designing and formulating the peroral administration of peptide and protein drugs.


Assuntos
Ácidos/química , Quimotripsina/química , Mucosa Intestinal/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/metabolismo , Proteínas/metabolismo , Tripsina/química , Concentração de Íons de Hidrogênio , Intestinos/química , Cinética , Peptídeos/química , Inibidores de Proteases/química , Proteínas/química
7.
Chem Soc Rev ; 44(15): 5031-9, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25992492

RESUMO

3D printing technology has attracted much attention due to its high potential in scientific and industrial applications. As an outstanding 3D printing technology, two-photon polymerization (TPP) microfabrication has been applied in the fields of micro/nanophotonics, micro-electromechanical systems, microfluidics, biomedical implants and microdevices. In particular, TPP microfabrication is very useful in tissue engineering and drug delivery due to its powerful fabrication capability for precise microstructures with high spatial resolution on both the microscopic and the nanometric scale. The design and fabrication of 3D hydrogels widely used in tissue engineering and drug delivery has been an important research area of TPP microfabrication. The resolution is a key parameter for 3D hydrogels to simulate the native 3D environment in which the cells reside and the drug is controlled to release with optimal temporal and spatial distribution in vitro and in vivo. The resolution of 3D hydrogels largely depends on the efficiency of TPP initiators. In this paper, we will review the widely used photoresists, the development of TPP photoinitiators, the strategies for improving the resolution and the microfabrication of 3D hydrogels.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Polimerização , Impressão Tridimensional , Engenharia Tecidual , Animais , Células Cultivadas , Humanos , Camundongos , Microtecnologia , Alicerces Teciduais
8.
Macromol Biosci ; 24(5): e2300469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38197551

RESUMO

In order to achieve long-term and controllable release of anti-tumor drugs at specific sites, temperature/pH responsive nanoparticles encapsulating 5-fluorouracil and methotrexate in situ are prepared through dispersion photopolymerization under green LED irradiation. The physicochemical properties of nanoparticles are characterized by scanning electron microscopy, Fourier transform infrared, dynamic light scattering, thermogravimetric/differential scanning calorimetry, and X-ray diffraction. In vitro drug release at different temperatures and pH values is examined to ascertain the release pattern of two drugs, which can be well described by Korsmeyer-Peppas kinetic model. The cytotoxicity evaluation illustrates that the tumor cells could be more effectively killed by the drug-loaded nanoparticles, and the improved therapeutic effect is attributed to the controllable and sustainable drug release as well as the enhanced cellular uptake. The blood safety and good biocompatibility of nanoparticles are further confirmed by hemolysis assay, indicating the prepared nanoparticles are potential candidates for effective tumor treatment.


Assuntos
Fluoruracila , Metotrexato , Nanopartículas , Polimetil Metacrilato , Temperatura , Fluoruracila/farmacologia , Fluoruracila/química , Metotrexato/farmacologia , Metotrexato/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Humanos , Polimetil Metacrilato/química , Polimerização , Hemólise/efeitos dos fármacos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Animais , Difração de Raios X , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/química , Linhagem Celular Tumoral
9.
J Mech Behav Biomed Mater ; 146: 106079, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634426

RESUMO

Hemostatic powders can be used for deep wounds and wounds with irregular shapes that are frequently inaccessible to traditional hemostatic dressings like hemostatic gauze, sponges, and foams. In this study, sulfobetaine methacrylate (SBMA) and quaternized carboxymethyl chitosan (QCCS) were combined to create an antibacterial hemostatic hydrogel through photopolymerization under green LED irradiation, which was then changed into PSBMA/QCCS powder. PSBMA/QCCS powder could quickly form hydrogel with strong wet adhesion. The internal structure, water absorption capacity, and adhesion properties of the powder were evaluated. The coagulation ability, antimicrobial properties, and biocompatibility of the powder were also characterized. The PSBMA/QCCS powder could aggregate blood cells and platelets to enhance hemostasis. Meanwhile, PSBMA/QCCS powder also showed effective antibacterial ability against both gram-positive bacteria (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli). In summary, PSBMA/QCCS powder is a promising hemostatic agent with the characteristics of quick hemostasis, tough wet adhesion, satisfactory biocompatibility, considerable antibacterial effect, and adaptability to any irregularly shaped wounds.


Assuntos
Quitosana , Hemostáticos , Quitosana/farmacologia , Pós , Betaína/farmacologia , Antibacterianos/farmacologia , Hidrogéis/farmacologia , Hemostáticos/farmacologia , Escherichia coli
10.
J Mater Chem B ; 11(8): 1798-1807, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36727624

RESUMO

Combined chemotherapy plays an increasingly important and practical role in the clinical treatment of malignant tumor. In this study, paclitaxel (PTX) and curcumin (Cur) are simultaneously encapsulated into nanogels (termed as NG-PC) in situ by microemulsion photopolymerization at 532 nm for synergistically suppressing breast tumors. NG-PC with a size of 180 nm and a low polydispersity index (PDI < 0.2) presents a controlled and cumulative release of PTX and Cur within 90 h. Moreover, NG-PC displays a remarkable killing effect against 4T1 and MCF-7 cells. In vivo antitumor evaluation on 4T1 tumor-bearing mice demonstrates that NG-PC has significantly higher ability to inhibit tumor growth, inducing necrosis, apoptosis and suppression of proliferation than that of a single drug. Our research provides a facile method to prepare a nano-drug delivery platform with excellent drug co-loading ability and synergistic antitumor effect.


Assuntos
Neoplasias da Mama , Curcumina , Humanos , Camundongos , Animais , Feminino , Paclitaxel/farmacologia , Curcumina/farmacologia , Nanogéis , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico
11.
Phys Chem Chem Phys ; 14(45): 15785-92, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23080400

RESUMO

A series of C(2v) symmetrical two-photon absorption compounds with anthracene core, 2,7-bis[2-(4-substituted phenyl)-vinyl]-9,10-dipentyloxyanthracenes designated as I, II and III (the substituted groups at the 4-position of phenyl of I, II and III were dimethylamino, methyl and cyano, respectively) were designed and synthesized as initiators in two-photon induced polymerization (TPIP). The anthracene ring was modified by linking vinylphenyl groups to the 2,7-position to extend conjugation system length and two pentyloxy groups to the 9,10-position to serve as electronic donors. Two-photon absorption cross section of I was around 300 GM, which was much larger than the 10 GM of II and 29 GM of III at 800 nm. I of 0.18% molar ratio in resin composed of methacrylic acid and dipentaerythritol hexaacrylate exhibited a dramatically low threshold of 0.64 mW compared with commercial photoinitiator benzil at a scanning speed 10 µm s(-1). Moreover, the threshold of photoinitiator I was only increased to 2.53 mW at a scanning speed of 1000 µm s(-1). The dependency of threshold on the concentration and exposure time was in accordance with theoretical calculation. Finally, a reasonable mechanism of the two-photon initiating process was proposed. This study provides good prospects for developing low threshold photoinitiator in TPIP.


Assuntos
Antracenos/química , Antracenos/síntese química , Fótons , Estrutura Molecular , Fenômenos Ópticos , Polimerização
12.
Colloids Surf B Biointerfaces ; 217: 112611, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35679736

RESUMO

Tumor microenvironment-responsive nanogels loading antitumor drugs can improve the chemotherapy efficiency due to their suitable size, great hydrophilicity, excellent biocompatibility, and sensitivity to specific stimulation. Herein, a simple and effective strategy of one-pot laser-induced emulsion polymerization at 532 nm was developed to prepare carmofur-loaded nanogels based on biocompatible and temperature/pH-sensitive monomers including polyethylene glycol diacrylate (PEGDA), N-vinylcaprolactam (NVCL), and 2-(dimethylamino) ethyl methacrylate (DMAEMA). The nanogels loading carmofur with dual-stimuli responsive drug release properties were rapidly obtained under laser irradiation (beam diameter 2.5 mm, laser power 60 mW) for only 100 s. These nanogels exhibited an average hydrodynamic diameter of 195.9 nm and a low polydispersity index of 0.115. The effect of monomer ratio on the size, morphology, double-bond conversion, and thermo/pH-sensitivity of nanogels was investigated. The cumulative carmofur release from nanogels at pH 5.0 within 48 h was nearly three times that at pH 7.4, while the release amount at 42 °C was twice that at 25 °C, showing the controlled and sustainable release with the change of pH and temperature. The in vitro release kinetics of carmofur was in accord with first-order release model.


Assuntos
Fluoruracila , Lasers , Portadores de Fármacos/química , Emulsões , Fluoruracila/análogos & derivados , Concentração de Íons de Hidrogênio , Nanogéis , Polimerização , Temperatura
13.
Photochem Photobiol ; 98(1): 132-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390000

RESUMO

Nanogel is an important kind of biomaterials applied for wound dressings, drug delivery, medical diagnostics and biosensors. The properties of nanogels closely depend on the density of the crosslinking network. In this study, the role of triethanolamine (TEOA) in the effect on the crosslinking degree of nanogels based on poly(ethylene glycol) diacrylate (PEGDA) was investigated and illustrated. The effect of TEOA on the process of photopolymerization at 532 nm and properties of the nanogels was systematically investigated by using UV-vis spectroscopy, FT-IR spectroscopy, 1 H NMR, DLS, SEM, AFM and DSC. In brief, the double-bond conversion of photopolymerization and the crosslinking degree of nanogels can be effectively regulated by TEOA.


Assuntos
Etanolaminas , Polietilenoglicóis , Sistemas de Liberação de Medicamentos , Nanogéis , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Int J Biol Macromol ; 214: 120-127, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661672

RESUMO

Collagen (Col) films were reinforced by celluloses in different geometries: microcrystalline cellulose (MCC), cellulosic fines (CF), cellulose nanofiber (CNF) and cellulose nanocrystals (CNC). The reinforcement mechanisms were investigated by the elastoplasticity and fracture appearance. Compared with the fracture stress of collagen film (67.5 MPa), the Col-CNF films effectively borne the stress (95.8 MPa) by intercrystalline fracture, ascribing the abundant hydrogen bonding and mechanical locking between cellulose and collagen. The toughness of Col-CF films was increased by the interfibrillar slippage of CF and pull-off of CF within the matrix, improving the strain-to-break from 8.37% to 12.13%. The films added with MCC and CNC weaken the mechanical behavior, due to the defects and lack of mechanical locking. Besides, the effects of celluloses' geometries on the thickness, density, water-tightness, thermal stability, crystallinity and FTIR of films were also investigated. These provide the evidence that the geometries of fillers diversely improve the behaviors of collagen film offering strategies for the film with adjustable mechanical properties.


Assuntos
Nanofibras , Nanopartículas , Celulose/química , Colágeno/química , Nanopartículas/química , Água/química
15.
Carbohydr Polym ; 294: 119762, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868786

RESUMO

Procedures for chitin nanofibers extraction from mushroom significantly modify their structure and physicochemical properties, through disintegration and surface oxidation of glucan residue, as well as surface deacetylation of chitin. Here, four kinds of chitin-glucan nanofibers (CGNF) were isolated form Shiitake stipes via different alkali treatment conditions, wherein glucan content ranged from 6.4 % to 46.8 %. Observations with transmission electron microscopy showed that CGNFs possessed average widths with 5.1 ± 1.2 to 7.1 ± 1.5 nm. The glucan showed a negative effect on the crystal index and thermal stability of CGNFs. A strong positive correlation was observed between glucan residues and zeta potential value. The phenomenon about the increase of viscosity, yield stress and elastic modulus upon glucan decrease was discussed. Overall, the residual glucan offers fungi-derived chitin nanomaterials a diversity of material properties and tuning its content is a feasible approach for customize nano chitin fibers used in nutraceutical and food industry.


Assuntos
Nanofibras , Nanoestruturas , Quitina/química , Glucanos/química , Nanofibras/química , Reologia
16.
J Mater Chem B ; 10(17): 3293-3302, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380157

RESUMO

Drug-loaded nanogels for cancer treatment can limit the free diffusion and distribution of drug molecules in the whole body to reduce undesirable side effects and improve the drug absorption efficiency of the tumor. In this study, curcumin as a model drug was encapsulated into nanogels in situ through microemulsion photopolymerization at 532 nm. Nanogels loaded with curcumin (NG-C) displayed a diameter of around 150 nm with good stability and a low polydispersity index of around 0.1. NG-C had a drug-loading capacity of 8.96 ± 1.16 wt%. The cumulative release of curcumin from NG-C was around 25%, 34% and 55% within 90 h in pH 7.4, 6.8 and 5.0 PBS buffer, respectively. NG-C presented prominent cytotoxicity toward Hep G2 and HeLa cancer cells in vitro. Moreover, NG-C exhibited much a stronger inhibition of tumor growth, necrosis, apoptosis, and the suppression of proliferation compared with curcumin on Hep G2 tumor-bearing nude mice.


Assuntos
Curcumina , Animais , Apoptose , Curcumina/química , Células HeLa , Humanos , Camundongos , Camundongos Nus , Nanogéis
17.
Meat Sci ; 184: 108690, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34656007

RESUMO

This study aimed to evaluate the effects of different cooking time (2, 4, and 6 h) and temperature (50, 60, 70, 80, and 90 °C) on physical, textual, and structural properties of longissimus lumborum muscle of yak, and to explore the thermal denaturation process of intramuscular collagen by using a new tool (collagen hybridizing peptide staining, CHP staining). The results showed that tenderness was affected by the interaction of cooking time and temperature and the changes in moisture and collagen composition. In comparison with cooking time, temperature had more obvious effects on cooking loss, moisture content and redness. Scanning electron microscopy showed that as the temperature increased, intramuscular connective tissue gradually degraded, and muscle fibers became more compact. CHP staining showed that the collagen in the perimysium first denatured at 50 °C, and more and more collagen denatured and degraded as the temperature increased.


Assuntos
Tecido Conjuntivo/química , Culinária/métodos , Carne Vermelha/análise , Animais , Bovinos , Colágeno/química , Tecido Conjuntivo/ultraestrutura , Microscopia Eletrônica de Varredura , Músculo Esquelético , Temperatura
18.
Front Plant Sci ; 13: 951318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903220

RESUMO

Southern corn rust (SCR) caused by Puccinia polysora Underw. poses a major threat to maize production worldwide. The utilization of host SCR-resistance genes and the cultivation of resistant cultivars are the most effective, economical strategies for controlling SCR. Here, we identified and cloned a new SCR resistance gene, RppM, from the elite maize inbred line Jing2416K. RppM was found to encode a typical CC-NBS-LRR protein localized in both the nucleus and cytoplasm. This gene was constitutively expressed at all developmental stages and in all tissues examined, with the strongest expression detected in leaves at the mature stage. A transcriptome analysis provided further evidence that multiple defense systems were initiated in Jing2416K, including pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity, reinforcement of cell walls, accumulation of antimicrobial compounds, and activation of phytohormone signaling pathways. Finally, we developed functional Kompetitive allele-specific PCR markers for RppM using two conserved SNP sites and successfully applied these functional markers for the detection of RppM and the cultivation of resistant maize cultivars, demonstrating their great potential utility in maize breeding.

19.
Front Bioeng Biotechnol ; 9: 771851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746113

RESUMO

In recent years, the exploration of tumor microenvironment has provided a new approach for tumor treatment. More and more researches are devoted to designing tumor microenvironment-responsive nanogels loaded with therapeutic drugs. Compared with other drug carriers, nanogel has shown great potential in improving the effect of chemotherapy, which is attributed to its stable size, superior hydrophilicity, excellent biocompatibility, and responsiveness to specific environment. This review primarily summarizes the common preparation techniques of nanogels (such as free radical polymerization, covalent cross-linking, and physical self-assembly) and loading ways of drug in nanogels (including physical encapsulation and chemical coupling) as well as the controlled drug release behaviors. Furthermore, the difficulties and prospects of nanogels as drug carriers are also briefly described.

20.
J Colloid Interface Sci ; 582(Pt B): 711-719, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911416

RESUMO

Nanogels have been widely prepared and characterized in recent years due to their unique advantages. Here, an effective, original, and facile method of emulsion-free photopolymerization at 532 nm without surfactant was developed to prepare nanogels based on poly(ethylene glycol) diacrylate (PEGDA). The 532 nm continuous laser with symmetrical energy distribution like a three-dimensional shape of a straw hat was used to control the reaction region. The self-emulsification of PEGDA in water was studied and PEGDA micelles were directly cross-linked by controlling the laser energy. The number of micelles participating in the microreaction region and the double bond crosslinking between micellar aggregates and inside micelles were reasonably regulated. The size of the nanogels could be effectively modulated by controlling reaction parameters including laser power, monomer concentration, initiator concentration, and reaction time. Finally, ultrasmall nanogels with around 30 nm in size were prepared by balancing double bond crosslinking between micellar aggregates and inside micelles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa