Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171418, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460701

RESUMO

Perturbations in soil microbial communities caused by climate warming are expected to have a strong impact on biodiversity and future climate-carbon (C) feedback, especially in vulnerable habitats that are highly sensitive to environmental change. Here, we investigate the impact of four-year experimental warming on soil microbes and C cycling in the Loess Hilly Region of China. The results showed that warming led to soil C loss, mainly from labile C, and this C loss is associated with microbial response. Warming significantly decreased soil bacterial diversity and altered its community structure, especially increasing the abundance of heat-tolerant microorganisms, but had no effect on fungi. Warming also significantly increased the relative importance of homogeneous selection and decreased "drift" of bacterial and fungal communities. Moreover, warming decreased bacterial network stability but increased fungal network stability. Notably, the magnitude of soil C loss was significantly and positively correlated with differences in bacterial community characteristics under ambient and warming conditions, including diversity, composition, network stability, and community assembly. This result suggests that microbial responses to warming may amplify soil C loss. Combined, these results provide insights into soil microbial responses and C feedback in vulnerable ecosystems under climate warming scenarios.


Assuntos
Ecossistema , Microbiota , Pradaria , Solo , Carbono , Mudança Climática , Microbiologia do Solo , Bactérias
2.
Int J Biol Macromol ; 230: 123376, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709820

RESUMO

The NAC transcription factor (TF) family is one of the largest plant-specific gene families, playing the vital roles in plant growth and development as well as stress response. Although it has been extensively characterized in many plants, the significance of NAC family in wild emmer wheat is not well understood up to now. Here, a total of 200 NAC transcription factors were identified in wild emmer (TdNACs) through a genome-search method, which were classified into 12 subfamilies based on phylogenetic relationship. And the members in the subfamily shared similar exon-intron structure and conversed domain organization. Collinearity analysis revealed that segmental duplication and polyploidization contributed mainly to the expansion of TdNACs. Furthermore, the genetic variations of TdNACs were investigated using the re-sequencing data and genetic bottleneck has occurred on NAC genes when wild emmer domesticated to cultivated emmer wheat. Finally, the expression patterns of these TdNACs were investigated using RNA-seq data of the salt-tolerant genotype under salt stress to obtain salt-responsive TdNACs, and 10 out of which were further validated using QPCR analysis. This study provided the targets for further functional study of TdNAC genes, and also contributed to mine novel genes for improving the salt tolerance in wheat and other crops.


Assuntos
Genes de Plantas , Triticum , Triticum/metabolismo , Filogenia , Genótipo , Estresse Salino/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa