Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2805: 161-169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008181

RESUMO

Pressure exerted by fluid contained within a lumen plays a crucial role in the growth, morphogenesis, and patterning of epithelial organs. Accurate modulation of lumen pressure in the developing embryo requires sensitive and robust methods that can detect and vary pressure in the range of tens to hundreds of Pascals (Pa). Here we describe a simple, cost-effective protocol for setting up a pressure modulation apparatus combining a high-sensitivity pressure sensor and a water column whose height can be finely tuned. We demonstrate lumen pressure control using the developing brain of early chicken embryos.


Assuntos
Pressão , Animais , Embrião de Galinha , Encéfalo/embriologia , Encéfalo/fisiologia
2.
Nat Electron ; 7(7): 586-597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086869

RESUMO

The functional and sensory augmentation of living structures, such as human skin and plant epidermis, with electronics can be used to create platforms for health management and environmental monitoring. Ideally, such bioelectronic interfaces should not obstruct the inherent sensations and physiological changes of their hosts. The full life cycle of the interfaces should also be designed to minimize their environmental footprint. Here we report imperceptible augmentation of living systems through in situ tethering of organic bioelectronic fibres. Using an orbital spinning technique, substrate-free and open fibre networks-which are based on poly (3,4-ethylenedioxythiophene):polystyrene sulfonate-can be tethered to biological surfaces, including fingertips, chick embryos and plants. We use customizable fibre networks to create on-skin electrodes that can record electrocardiogram and electromyography signals, skin-gated organic electrochemical transistors and augmented touch and plant interfaces. We also show that the fibres can be used to couple prefabricated microelectronics and electronic textiles, and that the fibres can be repaired, upgraded and recycled.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa