Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Neurosci ; 18: 1339262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356651

RESUMO

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality, especially in teenagers to young adults. In recent decades, different biomarkers and/or staining protocols have been employed to evaluate the post-injury development of pathological structures, but they have produced many contradictory findings. Since correctly identifying the underlying neuroanatomical changes is critical to advancing TBI research, we compared three commonly used markers for their ability to detect TBI pathological structures: Fluoro-Jade C, the rabbit monoclonal antibody Y188 against amyloid precursor protein and the NeuroSilver kit were used to stain adjacent slices from naïve or injured mouse brains harvested at different time points from 30 min to 3 months after lateral fluid percussion injury. Although not all pathological structures were stained by all markers at all time points, we found damaged neurons and deformed dendrites in gray matter, punctate and perivascular structures in white matter, and axonal blebs and Wallerian degeneration in both gray and white matter. The present study demonstrates the temporal and structural sensitivities of the three biomarkers: each marker is highly effective for a set of pathological structures, each of which in turn emerges at a particular time point. Furthermore, the different biomarkers showed different abilities at detecting identical types of pathological structures. In contrast to previous studies that have used a single biomarker at a single time range, the present report strongly recommends that a combination of different biomarkers should be adopted and different time points need to be checked when assessing neuropathology after TBI.

2.
Brain Pathol ; 33(6): e13163, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37156643

RESUMO

Previous studies of human traumatic brain injury (TBI) have shown diffuse axonal injury as varicosities or spheroids in white matter (WM) bundles when using immunoperoxidase-ABC staining with 22C11, a mouse monoclonal antibody against amyloid precursor protein (APP). These findings have been interpreted as TBI-induced axonal pathology. In a mouse model of TBI however, when we used immunofluorescent staining with 22C11, as opposed to immunoperoxidase staining, we did not observe varicosities or spheroids. To explore this discrepancy, we performed immunofluorescent staining with Y188, an APP knockout-validated rabbit monoclonal that shows baseline immunoreactivity in neurons and oligodendrocytes of non-injured mice, with some arranged-like varicosities. In gray matter after injury, Y188 intensely stained axonal blebs. In WM, we encountered large patches of heavily stained puncta, heterogeneous in size. Scattered axonal blebs were also identified among these Y188-stained puncta. To assess the neuronal origin of Y188 staining after TBI we made use of transgenic mice with fluorescently labeled neurons and axons. A close correlation was observed between Y188-stained axonal blebs and fluorescently labeled neuronal cell bodies/axons. By contrast, no correlation was observed between Y188-stained puncta and fluorescent axons in WM, suggesting that these puncta in WM did not originate from axons, and casting further doubt on the nature of previous reports with 22C11. As such, we strongly recommend Y188 as a biomarker for detecting damaged neurons and axons after TBI. With Y188, stained axonal blebs likely represent acute axonal truncations that may lead to death of the parent neurons. Y188-stained puncta in WM may indicate damaged oligodendrocytes, whose death and clearance can result in secondary demyelination and Wallerian degeneration of axons. We also provide evidence suggesting that 22C11-stained varicosities or spheroids previously reported in TBI patients might be showing damaged oligodendrocytes, due to a cross-reaction between the ABC kit and upregulated endogenous biotin.


Assuntos
Precursor de Proteína beta-Amiloide , Lesões Encefálicas Traumáticas , Animais , Camundongos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Axônios/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Camundongos Endogâmicos , Camundongos Transgênicos , Coloração e Rotulagem
3.
Am J Physiol Lung Cell Mol Physiol ; 302(1): L4-L12, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21964404

RESUMO

Mucociliary clearance is the primary innate physical defense mechanism against inhaled pathogens and toxins. Vectorial ion transport, primarily sodium absorption and anion secretion, by airway epithelial cells supports mucociliary clearance. This is evidenced by diseases of abnormal ion transport such as cystic fibrosis and pseudohypoaldosteronism that are characterized by changes in mucociliary clearance. Sodium absorption and chloride secretion in human bronchial epithelial cells depend on potassium channel activity, which creates a favorable electrochemical gradient for both by hyperpolarizing the apical plasma membrane. Although the role of basolateral membrane potassium channels is firmly established and extensively studied, a role for apical membrane potassium channels has also been described. Here, we demonstrate that bupivacaine and quinidine, blockers of four-transmembrane domain, two-pore potassium (K2P) channels, inhibit both amiloride-sensitive sodium absorption and forskolin-stimulated anion secretion in polarized, normal human bronchial epithelial cells at lower concentrations when applied to the mucosal surface than when applied to the serosal surface. Transcripts from four genes, KCNK1 (TWIK-1), KCNK2 (TREK-1), KCNK5 (TASK-2), and KCNK6 (TWIK-2), encoding K2P channels were identified by RT-PCR. Protein expression at the apical membrane was confirmed by immunofluorescence. Our data provide further evidence that potassium channels, in particular K2P channels, are expressed and functional in the apical membrane of airway epithelial cells where they may be targets for therapeutic manipulation.


Assuntos
Polaridade Celular , Cloretos/metabolismo , Canais de Potássio de Domínios Poros em Tandem , Mucosa Respiratória/metabolismo , Sódio/metabolismo , Absorção , Amilorida/farmacologia , Brônquios/citologia , Bupivacaína/farmacologia , Linhagem Celular , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Colforsina/farmacologia , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica/métodos , Transporte de Íons , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Quinidina/farmacologia
4.
J Biol Chem ; 285(41): 31806-18, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20670938

RESUMO

The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh(-/-) mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh(-/-) islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh(-/-) islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh(-/-) islets also have increased [U-(14)C]glutamine oxidation. In contrast, hadh(-/-) mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh(-/-) islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh(-/-) islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/deficiência , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Glutamato Desidrogenase/metabolismo , Hiperinsulinismo/enzimologia , Células Secretoras de Insulina/enzimologia , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Animais , Glicemia/genética , Glicemia/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Glutamato Desidrogenase/genética , Hiperinsulinismo/genética , Insulina/sangue , Ácidos Cetoglutáricos/metabolismo , Camundongos , Camundongos Knockout
5.
Front Neurosci ; 15: 579859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113227

RESUMO

Immunostaining is a powerful technique and widely used to identify molecules in tissues and cells, although critical steps are necessary to block cross-reaction. Here we focused on an overlooked cross immunoreactivity issue where a secondary antibody (secondary) cross-reacts with a primary antibody (primary) from a different species. We first confirmed the previously reported cross-species binding of goat anti-mouse secondary to rat primary. This was accomplished by staining with a rat primary against glial fibrillary acidic protein (GFAP) and visualizing with goat (or donkey) anti-mouse secondary. We then further revealed the converse cross-species binding by staining with a mouse primary against neuronal nuclear protein (NeuN) and visualizing with anti-rat secondaries. We speculate that mouse and rat primaries share antigenicity, enabling either secondary to recognize either primary. To block this cross-species binding in double staining experiments, we compared three protocols using mouse anti-NeuN and rat anti-GFAP, two primaries whose antigens have non-overlapping distributions in brain tissues. Simultaneous staining resulted in cross-species astrocytic staining (anti-mouse secondary to rat anti-GFAP primary) but no cross-species neuronal staining (anti-rat secondary to mouse anti-NeuN primary). Cross-species astrocytic staining was missing after sequential same-species staining with mouse anti-NeuN primary, followed by rat anti-GFAP. However, cross-species astrocytic staining could not be diminished after sequential same-species staining with rat anti-GFAP primary, followed by mouse anti-NeuN. We thus hypothesize that a competition exists between anti-mouse and anti-rat secondaries in their binding to both primaries. Single staining for NeuN or GFAP visualized with dual secondaries at different dilution ratio supported this hypothesis.

6.
Otolaryngol Head Neck Surg ; 165(2): 290-299, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33433247

RESUMO

OBJECTIVE: To evaluate the presence of bitter taste receptors (T2Rs) in the middle ear and to examine their relationship with chronic ear infections. STUDY DESIGN: Cross-sectional study. SETTING: Tertiary care hospital. METHODS: This study enrolled 84 patients being evaluated for otologic surgery: 40 for chronic otitis media (COM) and 44 for other surgical procedures (controls). We collected a small piece of mucosa from 14 patients for mRNA analysis and from 23 patients for immunohistochemistry. A total of 55 patients underwent a double-blind taste test to gauge sensitivity to phenylthiocarbamide, denatonium, quinine, sucrose, and sodium chloride; 47 patients gave a salivary sample for single-nucleotide polymorphism analysis of rs1376251 (TAS2R50) and rs1726866 (TAS2R38). RESULTS: Bitter taste receptors were found in all samples, but the repertoire varied among patients. T2R50 was the most consistently identified receptor by mRNA analysis. Its rs1376251 allele was related to susceptibility to COM but not the expression pattern of T2R50. Ratings of bitterness intensity of phenylthiocarbamide, a ligand for T2R38, differed significantly between the COM and control groups. CONCLUSION: T2Rs were found within the middle ear of every patient sampled; the rs1376251 allele of TAS2R50 appears to be related to chronic ear infections. These receptors are an intriguing target for future research and possible drug targeting.


Assuntos
Otite Média/complicações , Otite Média/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Acoplados a Proteínas G/genética , Distúrbios do Paladar/epidemiologia , Distúrbios do Paladar/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Otite Média/metabolismo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Distúrbios do Paladar/diagnóstico , Percepção Gustatória/genética , Adulto Jovem
7.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33106385

RESUMO

Traumatic brain injury (TBI) is associated with aberrant network hyperexcitability in the dentate gyrus (DG). GABAAergic parvalbumin-expressing interneurons (PV-INs) in the DG regulate network excitability with strong, perisomatic inhibition, although the posttraumatic effects on PV-IN function after TBI are not well understood. In this study, we investigated physiological alterations in PV-INs one week after mild lateral fluid percussion injury (LFPI) in mice. PV-IN cell loss was observed in the dentate hilus after LFPI, with surviving PV-INs showing no change in intrinsic membrane properties. Whole-cell voltage clamp recordings in PV-INs revealed alterations in both EPSCs and IPSCs (EPSCs/IPSCs). Evoked EPSCs (eEPSCs) in PV-INs from perforant path electrical stimulation were diminished after injury but could be recovered with application of a GABAA-receptor antagonist. Furthermore, current-clamp recordings using minimal perforant path stimulation demonstrated a decrease in evoked PV-IN action potentials (APs) after LFPI, which could be restored by blocking GABAAergic inhibition. Together, these findings suggest that injury alters synaptic input onto PV-INs, resulting in a net inhibitory effect that reduces feedforward PV-IN activation in the DG. Decreased PV-IN activation suggests a potential mechanism of DG network hyperexcitability contributing to hippocampal dysfunction after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Parvalbuminas , Animais , Giro Denteado/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Parvalbuminas/metabolismo
8.
J Neurosci ; 28(40): 9953-68, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18829953

RESUMO

Activity-dependent specification of neuronal architecture during early postnatal life is essential for refining the precision of communication between neurons. In the spinal cord under normal circumstances, the AMPA receptor subunit GluR1 is expressed at high levels by motor neurons and surrounding interneurons during this critical developmental period, although the role it plays in circuit formation and locomotor behavior is unknown. Here, we show that GluR1 promotes dendrite growth in a non-cell-autonomous manner in vitro and in vivo. The mal-development of motor neuron dendrites is associated with changes in the pattern of interneuronal connectivity within the segmental spinal cord and defects in strength and endurance. Transgenic expression of GluR1 in adult motor neurons leads to dendrite remodeling and supernormal locomotor function. GluR1 expression by neurons within the segmental spinal cord plays an essential role in formation of the neural network that underlies normal motor behavior.


Assuntos
Neurônios Motores/fisiologia , Receptores de AMPA/fisiologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/fisiologia , Neurônios Motores/citologia , Rede Nervosa/citologia , Rede Nervosa/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/biossíntese , Receptores de AMPA/genética , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Xenopus laevis
9.
Neurosci Res ; 60(3): 250-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18164087

RESUMO

The primate lobulus petrosus (LP) of the cerebellar paraflocculus receives inputs from visual system-related pontine nuclei, and projects to eye movement-related cerebellar nuclei. To reveal a potential involvement of LP in oculomotor control, we lesioned LP unilaterally by local injections of ibotenic acid in three Macaca fuscata. We examined the effects of lesion on eye movements evoked by step (3 degrees )-ramp (5-15 degrees/s) moving target. To step-ramp moving target, the monkeys showed an initial slow eye movement and later a small catch-up saccade, which was followed by the post-saccadic pursuit nearly matching to the velocity of the ramp target motion. After LP lesioning, the velocity of post-saccadic pursuits in the ipsiversive and down-ward directions decreased by 20-40% in all three monkeys. These deficits lasted for at least 1 month, and some recovery was observed. In the amplitudes of catch-up saccades, no consistent changes were seen among the three monkeys after LP lesioning. These results suggest an involvement of LP in the primate smooth pursuit eye movement control.


Assuntos
Cerebelo/fisiologia , Acompanhamento Ocular Uniforme/fisiologia , Animais , Cerebelo/citologia , Denervação , Agonistas de Aminoácidos Excitatórios , Ácido Ibotênico , Macaca , Masculino , Ponte/citologia , Ponte/fisiologia , Movimentos Sacádicos/fisiologia
10.
Biotechniques ; 43(2): 195-6, 198, 200 passim, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17824387

RESUMO

Air-liquid interface models using murine tracheal respiratory epithelium have revolutionized the in vitro study of pulmonary diseases. This model is often impractical because of the small number of respiratory epithelial cells that can be isolated from the mouse trachea. We describe a simple technique to harvest the murine nasal septum and grow the epithelial cells in an air-liquid interface. The degree of ciliation of mouse trachea, nasal septum, and their respective cultured epithelium at an air-liquid interface were compared by scanning electron microscopy (SEM). Immunocytochemistry for type IV beta-tubulin and zona occludens-1 (Zo-1) are performed to determine differentiation and confluence, respectively. To rule out contamination with olfactory epithelium (OE), immunocytochemistry for olfactory marker protein (OMP) was performed. Transepithelial resistance and potential measurements were determined using a modified vertical Ussing chamber SEM reveals approximately 90% ciliated respiratory epithelium in the nasal septum as compared with 35% in the mouse trachea. The septal air-liquid interface culture demonstrates comparable ciliated respiratory epithelium to the nasal septum. Immunocytochemistry demonstrates an intact monolayer and diffuse differentiated ciliated epithelium. These cultures exhibit a transepithelial resistance and potential confirming a confluent monolayer with electrically active airway epitheliumn containing both a sodium-absorptive pathway and a chloride-secretory pathway. To increase the yield of respiratory epithelial cells harvested from mice, we have found the nasal septum is a superior source when compared with the trachea. The nasal septum increases the yield of respiratory epithelial cells up to 8-fold.


Assuntos
Técnicas de Cultura de Células/métodos , Septo Nasal/citologia , Septo Nasal/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , Técnicas de Cultura de Tecidos/métodos , Ar , Animais , Contagem de Células , Camundongos , Soluções
11.
Front Neuroanat ; 11: 107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201002

RESUMO

The hippocampus plays a critical role in learning and memory and higher cognitive functions, and its dysfunction has been implicated in various neuropathological disorders. Electrophysiological recording undertaken in live brain slices is one of the most powerful tools for investigating hippocampal cellular and network activities. The plane for cutting the slices determines which afferent and/or efferent connections are best preserved, and there are three commonly used slices: hippocampal-entorhinal cortex (HEC), coronal and transverse. All three slices have been widely used for studying the major afferent hippocampal pathways including the perforant path (PP), the mossy fibers (MFs) and the Schaffer collaterals (SCs). Surprisingly, there has never been a systematic investigation of the anatomical and functional consequences of slicing at a particular angle. In the present study, we focused on how well fiber pathways are preserved from the entorhinal cortex (EC) to the hippocampus, and within the hippocampus, in slices generated by sectioning at different angles. The postmortem neural tract tracer 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) was used to label afferent fibers to hippocampal principal neurons in fixed slices or whole brains. Laser scanning confocal microscopy was adopted for imaging DiI-labeled axons and terminals. We demonstrated that PP fibers were well preserved in HEC slices, MFs in both HEC and transverse slices and SCs in all three types of slices. Correspondingly, field excitatory postsynaptic potentials (fEPSPs) could be consistently evoked in HEC slices when stimulating PP fibers and recorded in stratum lacunosum-moleculare (sl-m) of area CA1, and when stimulating the dentate granule cell layer (gcl) and recording in stratum lucidum (sl) of area CA3. The MF evoked fEPSPs could not be recorded in CA3 from coronal slices. In contrast to our DiI-tracing data demonstrating severely truncated PP fibers in coronal slices, fEPSPs could still be recorded in CA1 sl-m in this plane, suggesting that an additional afferent fiber pathway other than PP might be involved. The present study increases our understanding of which hippocampal pathways are best preserved in the three most common brain slice preparations, and will help investigators determine the appropriate slices to use for physiological studies depending on the subregion of interest.

12.
Appl Immunohistochem Mol Morphol ; 25(3): 221-224, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26509907

RESUMO

We optimized methanol treatment in paraformaldehyde-fixed slices for immunofluorescent staining of ependymal basal bodies in brain ventricles. As 100% methanol induced severe deformations to the slices (including rolling and folding over), we tried to decrease methanol concentration. We found that 33.3% to 75% methanol could result in ideal immunostaining of basal bodies without inducing obvious deformations. Instead of treating slices at -20°C (without proper cryoprotection measurements) as suggested in previous studies, we carried out methanol treatment at room temperature. Our modified protocol can not only raise immunostaining efficiency in tissue slices, it may also prevent potential freezing damages to the samples.


Assuntos
Encéfalo/metabolismo , Metanol/química , Imunofluorescência , Humanos
13.
J Neurosci ; 25(30): 7048-53, 2005 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16049181

RESUMO

The interaction of an animal with its environment during a critical period in early postnatal life has lifelong effects on the structure and function of sensory and motor systems. To gain insight into the molecular mechanisms of experience-dependent development, we challenged young rats to adapt to a new environment that engenders novel motor behavior. Rats born in the gravitational field (1G) of the earth subsequently were reared for 2 weeks either in the absence of gravity (microgravity) or at 1G. A comparison of gene expression using microarrays led to the identification of a panel of differentially regulated transcripts. We report here that the abundance of serum- and glucocorticoid-inducible kinase (SGK) is increased in spinal cord tissue from animals reared in microgravity in comparison with 1G-reared controls. The induction of SGK expression also can be achieved by administration of glucocorticoids to animals at 1G or neurons in vitro. Expression of constitutively active SGK in neurons leads to the elaboration of neuronal dendrites and their branching. Glucocorticoids also lead to dendrite elaboration, and this effect can be abrogated by inhibiting SGK activity. Changes in the level of expression of SGK could be part of the mechanism for experience-dependent acquisition of mature neuronal properties.


Assuntos
Dendritos/fisiologia , Regulação Enzimológica da Expressão Gênica , Proteínas Imediatamente Precoces/genética , Proteínas Serina-Treonina Quinases/genética , Medula Espinal/fisiologia , Ausência de Peso , Animais , Locomoção/fisiologia , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley , Voo Espacial , Medula Espinal/citologia
14.
J Neurotrauma ; 33(17): 1645-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-26529412

RESUMO

Cognitive impairment caused by traumatic brain injury (TBI) can lead to devastating consequences for both patients and their families. The underlying neurological basis for TBI-induced cognitive dysfunction remains unknown. However, many lines of research have implicated the hippocampus in the pathophysiology of TBI. In particular, past research has found that theta oscillations, long thought to be the electrophysiological basis of learning and memory, are decreased in the hippocampus post-TBI. Here, we recorded in vivo electrophysiological activity in the hippocampi of 16 mice, 8 of which had previously undergone a TBI. Consistent with previous data, we found that theta power in the hippocampus was decreased in TBI animals compared to sham controls; however, this effect was driven by changes in broadband power and not theta oscillations. This result suggests that broadband fluctuations in the hippocampal local field potential can be used as an electrophysiological surrogate of abnormal neurological activity post-TBI.


Assuntos
Concussão Encefálica/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , Animais , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Front Neuroanat ; 10: 54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242450

RESUMO

A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60.

16.
Front Neurol ; 6: 240, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617569

RESUMO

More than 2.5 million Americans suffer a traumatic brain injury (TBI) each year. Even mild to moderate TBI causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI), the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice, while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

17.
J Histochem Cytochem ; 63(2): 79-87, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-25411190

RESUMO

Gustducin is a guanosine nucleotide-binding protein functionally coupled with taste receptors and thus originally identified in taste cells of the tongue. Recently, bitter taste receptors and gustducin have been detected in the airways, digestive tracts and brain. The existing studies showing taste receptors and gustducin in the brain were carried out exclusively on frozen sections. In order to avoid the technical shortcomings associated with frozen sectioning, we performed immunofluorescence staining using vibratome-cut sections from mouse brains. Using a rabbit gustducin antibody, we could not detect neurons or astrocytes as reported previously. Rather, we found dense fibers in the nucleus accumbens and periventricular areas. We assumed these staining patterns to be specific after confirmation with conventional negative control staining. For the verification of this finding, we stained gustducin knockout mouse brain and tongue sections with the same rabbit gustducin antibody. Whereas negative staining was confirmed in the tongue, intensive fibers were constantly stained in the brain. Moreover, immunostaining with a goat gustducin antibody could not demonstrate the fibers in the brain tissue. The present study implies a cross immunoreaction that occurs with the rabbit gustducin antibody in mouse brain samples, suggesting that the conventional negative controls may not be sufficient when an immunostaining pattern is to be verified.


Assuntos
Anticorpos/imunologia , Encéfalo/metabolismo , Imuno-Histoquímica/métodos , Transducina/imunologia , Animais , Encéfalo/citologia , Masculino , Camundongos , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Coelhos , Língua/citologia , Língua/metabolismo
18.
Brain Res Mol Brain Res ; 107(1): 23-31, 2002 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-12414120

RESUMO

Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) was studied in the cerebellum and precerebellar nuclei of rats using immunohistochemistry and in situ hybridization. DNPI/VGLUT2-stained mossy fibers were principally seen in the vermis (lobules I and VIII-X) and flocculus, whereas BNPI/VGLUT1-stained mossy fibers were localized throughout the cortex. Some vermal and floccular mossy fibers were stained for both transporters. High levels of DNPI/VGLUT2 mRNA hybridization signals were demonstrated in many neurons throughout the vestibular nuclear complex as well as the lateral reticular, external cuneate, inferior olivary and deep cerebellar nuclei. Significant BNPI/VGLUT1 mRNA signals were demonstrated in the lateral reticular nucleus and vestibular nuclear complex but not in the inferior olivary nucleus, indicating that climbing fibers have DNPI/VGLUT2 only. These results show that DNPI/VGLUT2 is expressed preferentially to vestibulo-, reticulo- and cuneocerebellar neurons, some of which also possess BNPI/VGLUT1, suggesting some differential and co-operative functions between DNPI/VGLUT2 and BNPI/VGLUT1 in the cerebellum.


Assuntos
Tronco Encefálico/metabolismo , Proteínas de Transporte/metabolismo , Cerebelo/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Membrana Transportadoras , Fibras Nervosas/metabolismo , Vias Neurais/metabolismo , Proteínas de Transporte Vesicular , Animais , Tronco Encefálico/citologia , Proteínas de Transporte/genética , Cerebelo/citologia , Expressão Gênica/fisiologia , Imuno-Histoquímica , Masculino , Fibras Nervosas/ultraestrutura , Vias Neurais/citologia , Núcleo Olivar/citologia , Núcleo Olivar/metabolismo , Fosfatos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Formação Reticular/citologia , Formação Reticular/metabolismo , Transmissão Sináptica/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato , Proteína Vesicular 2 de Transporte de Glutamato , Núcleos Vestibulares/citologia , Núcleos Vestibulares/metabolismo
19.
Neurosci Lett ; 322(3): 173-6, 2002 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11897166

RESUMO

The relationship between axons derived from the prearcuate region and pontine neurons projecting to contralateral cerebellar hemispheric lobule VII, lobulus petrosus (LP) of the paraflocculus or the dorsal paraflocculus (DPFl) was investigated in the monkey. The frontopontine axons were labeled with biotinylated dextran and pontocerebellar neurons with cholera toxin subunit B or fast blue. Labeled frontopontine axons and terminals were seen in the dorsal, medial, paramedian and dorsolateral parts of the pontine nuclei. The distribution of the labeled frontopontine axons overlapped that of labeled neurons projecting to hemispheric lobule VII but did not overlap that of labeled neurons projecting to LP or DPFl. The pathway from the prearcuate region to hemispheric lobule VII may provide an anatomical substrate for the involvement of hemispheric lobule VII in voluntary eye movements.


Assuntos
Núcleo Arqueado do Hipotálamo/anatomia & histologia , Biotina/análogos & derivados , Cerebelo/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Ponte/anatomia & histologia , Amidinas , Animais , Núcleo Arqueado do Hipotálamo/citologia , Axônios/fisiologia , Cerebelo/citologia , Córtex Cerebral/citologia , Dextranos , Corantes Fluorescentes , Histocitoquímica , Macaca fascicularis , Microinjeções , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Ponte/citologia
20.
J Clin Invest ; 124(3): 1393-405, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531552

RESUMO

Bitter taste receptors (T2Rs) in the human airway detect harmful compounds, including secreted bacterial products. Here, using human primary sinonasal air-liquid interface cultures and tissue explants, we determined that activation of a subset of airway T2Rs expressed in nasal solitary chemosensory cells activates a calcium wave that propagates through gap junctions to the surrounding respiratory epithelial cells. The T2R-dependent calcium wave stimulated robust secretion of antimicrobial peptides into the mucus that was capable of killing a variety of respiratory pathogens. Furthermore, sweet taste receptor (T1R2/3) activation suppressed T2R-mediated antimicrobial peptide secretion, suggesting that T1R2/3-mediated inhibition of T2Rs prevents full antimicrobial peptide release during times of relative health. In contrast, during acute bacterial infection, T1R2/3 is likely deactivated in response to bacterial consumption of airway surface liquid glucose, alleviating T2R inhibition and resulting in antimicrobial peptide secretion. We found that patients with chronic rhinosinusitis have elevated glucose concentrations in their nasal secretions, and other reports have shown that patients with hyperglycemia likewise have elevated nasal glucose levels. These data suggest that increased glucose in respiratory secretions in pathologic states, such as chronic rhinosinusitis or hyperglycemia, promotes tonic activation of T1R2/3 and suppresses T2R-mediated innate defense. Furthermore, targeting T1R2/3-dependent suppression of T2Rs may have therapeutic potential for upper respiratory tract infections.


Assuntos
Imunidade Inata , Mucosa Nasal/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Sinalização do Cálcio , Células Cultivadas , Cílios/fisiologia , Células Epiteliais/fisiologia , Glucose/metabolismo , Humanos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Pseudomonas aeruginosa/imunologia , Compostos de Amônio Quaternário/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Rinite/imunologia , Rinite/metabolismo , Sinusite/imunologia , Sinusite/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa