Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(5): 814-822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589516

RESUMO

Single-cell Hi-C (scHi-C) technologies allow for probing of genome-wide cell-to-cell variability in three-dimensional (3D) genome organization from individual cells. Computational methods have been developed to reveal single-cell 3D genome features based on scHi-C, including A/B compartments, topologically associating domains and chromatin loops. However, no method exists for annotating single-cell subcompartments, which is important for understanding chromosome spatial localization in single cells. Here we present scGHOST, a single-cell subcompartment annotation method using graph embedding with constrained random walk sampling. Applications of scGHOST to scHi-C data and contact maps derived from single-cell 3D genome imaging demonstrate reliable identification of single-cell subcompartments, offering insights into cell-to-cell variability of nuclear subcompartments. Using scHi-C data from complex tissues, scGHOST identifies cell-type-specific or allele-specific subcompartments linked to gene transcription across various cell types and developmental stages, suggesting functional implications of single-cell subcompartments. scGHOST is an effective method for annotating single-cell 3D genome subcompartments in a broad range of biological contexts.


Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Animais , Humanos , Genoma , Camundongos , Cromatina/genética , Cromatina/metabolismo , Imageamento Tridimensional/métodos
3.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292994

RESUMO

New single-cell Hi-C (scHi-C) technologies enable probing of the genome-wide cell-to-cell variability in 3D genome organization from individual cells. Several computational methods have been developed to reveal single-cell 3D genome features based on scHi-C data, including A/B compartments, topologically-associating domains, and chromatin loops. However, no scHi-C analysis method currently exists for annotating single-cell subcompartments, which are crucial for providing a more refined view of large-scale chromosome spatial localization in single cells. Here, we present scGhost, a single-cell subcompartment annotation method based on graph embedding with constrained random walk sampling. Applications of scGhost to scHi-C data and single-cell 3D genome imaging data demonstrate the reliable identification of single-cell subcompartments and offer new insights into cell-to-cell variability of nuclear subcompartments. Using scHi-C data from the human prefrontal cortex, scGhost identifies cell type-specific subcompartments that are strongly connected to cell type-specific gene expression, suggesting the functional implications of single-cell subcompartments. Overall, scGhost is an effective new method for single-cell 3D genome subcompartment annotation based on scHi-C data for a broad range of biological contexts.

4.
Nat Commun ; 10(1): 5069, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699985

RESUMO

Higher-order genome organization and its variation in different cellular conditions remain poorly understood. Recent high-coverage genome-wide chromatin interaction mapping using Hi-C has revealed spatial segregation of chromosomes in the human genome into distinct subcompartments. However, subcompartment annotation, which requires Hi-C data with high sequencing coverage, is currently only available in the GM12878 cell line, making it impractical to compare subcompartment patterns across cell types. Here we develop a computational approach, SNIPER (Subcompartment iNference using Imputed Probabilistic ExpRessions), based on denoising autoencoder and multilayer perceptron classifier to infer subcompartments using typical Hi-C datasets with moderate coverage. SNIPER accurately reveals subcompartments using moderate coverage Hi-C datasets and outperforms an existing method that uses epigenomic features in GM12878. We apply SNIPER to eight additional cell lines and find that chromosomal regions with conserved and cell-type specific subcompartment annotations have different patterns of functional genomic features. SNIPER enables the identification of subcompartments without high-coverage Hi-C data and provides insights into the function and mechanisms of spatial genome organization variation across cell types.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Conformação de Ácido Nucleico , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/genética , Mapeamento Cromossômico , Segregação de Cromossomos , Cromossomos/genética , Simulação por Computador , Epigênese Genética , Genoma Humano , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Células Endoteliais da Veia Umbilical Humana , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa