Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Cytotherapy ; 26(1): 36-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37747393

RESUMO

BACKGROUND AIMS: Treating chronic non-healing diabetic wounds and achieving complete skin regeneration has always been a critical clinical challenge. METHODS: In order to address this issue, researchers conducted a study aiming to investigate the role of miR-126-3p in regulating the downstream gene PIK3R2 and promoting diabetic wound repair in endothelial progenitor cell (EPC)-derived extracellular vesicles. The study involved culturing EPCs with astragaloside IV, transfecting them with miR-126-3p inhibitor or mock plasmid, interfering with high glucose-induced damage in human umbilical vein endothelial cells (HUVECs) and treating diabetic skin wounds in rats. RESULTS: The healing of rat skin wounds was observed through histological staining. The results revealed that treatment with miR-126-3p-overexpressing EPC-derived extracellular vesicles accelerated the healing of rat skin wounds and resulted in better tissue repair with slower scar formation. In addition, the transfer of EPC-derived extracellular vesicles with high expression of miR-126-3p to high glucose-damaged HUVECs increased their proliferation and invasion, reduced necrotic and apoptotic cell numbers and improved tube formation. In this process, the expression of angiogenic factors vascular endothelial growth factor (VEGF)A, VEGFB, VEGFC, basic fibroblast growth factor and Ang-1 significantly increased, whereas the expression of caspase-1, NRLP3, interleukin-1ß, inteleukin-18, PIK3R2 and SPRED1 was suppressed. Furthermore, miR-126-3p was able to target and inhibit the expression of the PIK3R2 gene, thereby restoring the proliferation and migration ability of high glucose-damaged HUVEC. CONCLUSIONS: In summary, these research findings demonstrate the important role of miR-126-3p in regulating downstream genes and promoting diabetic wound repair, providing a new approach for treating chronic non-healing diabetic wounds.


Assuntos
Diabetes Mellitus , Células Progenitoras Endoteliais , Exossomos , MicroRNAs , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Piroptose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glucose/metabolismo , Proliferação de Células/genética , Proteínas Adaptadoras de Transdução de Sinal
2.
J Environ Manage ; 364: 121379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870787

RESUMO

Chemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017. Our results indicate that nitrogen addition promoted total plant biomass but reduced the plant species richness. Conversely, phosphorus enrichment did not promote plant biomass and exhibited an unimodal pattern with plant richness. In the belowground realm, distinct responses of soil prokaryotic and eukaryotic communities were observed under fertilizer application. Specifically, soil prokaryotic diversity decreased with nitrogen enrichment, correlating with shifts in soil pH. Similarly, soil eukaryotic diversity decreased with increased phosphorous inputs, aligning with the equilibrium between soil available and total phosphorus. We also established connections between these soil organism communities with above-ground plant richness and biomass. Overall, our study contributes to a better understanding of the sustainable impacts of human-induced nutrient enrichment on the natural environment. Future research should delve deeper into the long-term effects of fertilization on soil health and ecosystem functioning, aiming to achieve a balance between agricultural productivity and environmental conservation.


Assuntos
Biodiversidade , Fertilizantes , Solo , Tibet , Solo/química , Ecossistema , Fósforo/análise , Microbiologia do Solo , Biomassa , Nitrogênio , Agricultura
3.
Environ Microbiol ; 25(12): 3623-3629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849426

RESUMO

The assembly of bacterial communities in the rhizosphere is well-documented and plays a crucial role in supporting plant performance. However, we have limited knowledge of how plant rhizosphere determines the assembly of protistan predators and whether the potential associations between protistan predators and bacterial communities shift due to rhizosphere selection. To address this, we examined bacterial and protistan taxa from 443 agricultural soil samples including bulk and rhizosphere soils. Our results presented distinct patterns of bacteria and protistan predators in rhizosphere microbiome assembly. Community assembly of protistan predators was determined by a stochastic process in the rhizosphere and the diversity of protistan predators was reduced in the rhizosphere compared to bulk soils, these may be attributed to the indirect impacts from the altered bacterial communities that showed deterministic process assembly in the rhizosphere. Interestingly, we observed that the plant rhizosphere facilitates more close interrelationships between protistan predators and bacterial communities, which might promote a healthy rhizosphere microbial community for plant growth. Overall, our findings indicate that the potential predator-prey relationships within the microbiome, mediated by plant rhizosphere, might contribute to plant performance in agricultural ecosystems.


Assuntos
Microbiota , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Solo , Plantas
4.
New Phytol ; 238(3): 1198-1214, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740577

RESUMO

Host-associated fungi can help protect plants from pathogens, and empirical evidence suggests that such microorganisms can be manipulated by introducing probiotic to increase disease suppression. However, we still generally lack the mechanistic knowledge of what determines the success of probiotic application, hampering the development of reliable disease suppression strategies. We conducted a three-season consecutive microcosm experiment in which we amended banana Fusarium wilt disease-conducive soil with Trichoderma-amended biofertilizer or lacking this inoculum. High-throughput sequencing was complemented with cultivation-based methods to follow changes in fungal microbiome and explore potential links with plant health. Trichoderma application increased banana biomass by decreasing disease incidence by up to 72%, and this effect was attributed to changes in fungal microbiome, including the reduction in Fusarium oxysporum density and enrichment of pathogen-suppressing fungi (Humicola). These changes were accompanied by an expansion in microbial carbon resource utilization potential, features that contribute to disease suppression. We further demonstrated the disease suppression actions of Trichoderma-Humicola consortia, and results suggest niche overlap with pathogen and induction of plant systemic resistance may be mechanisms driving the observed biocontrol effects. Together, we demonstrate that fungal inoculants can modify the composition and functioning of the resident soil fungal microbiome to suppress soilborne disease.


Assuntos
Fusarium , Musa , Trichoderma , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Microbiologia do Solo , Solo , Musa/microbiologia
5.
Microb Ecol ; 86(4): 2541-2551, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37401933

RESUMO

Long-term fertilization affects soil organic C accumulation. A growing body of research has revealed critical roles of bacteria in soil organic C accumulation, particularly through mineral-associated organic C (MAOC) formation. Protists are essential components of soil microbiome, but the relationships between MAOC formation and protists under long-term fertilization remain unclear. Here, we used cropland soil from a long-term fertilization field trial and conducted two microcosm experiments with 13C-glucose addition to investigate the effects of N and P fertilizations on MAOC formation and the relationships with protists. The results showed that long-term fertilization (especially P fertilization) significantly (P < 0.05) increased 13C-MAOC content. Compared with P-deficient treatment, P replenishment enriched the number of protists (mainly Amoebozoa and Cercozoa) and bacteria (mainly Acidobacteriota, Bacteroidota, and Gammaproteobacteria), and significantly (P < 0.001) promoted the abundances of bacterial functional genes controlling C, N, P, and S metabolisms. The community composition of phagotrophic protists prominently (P < 0.001) correlated with the bacterial community composition, bacterial functional gene abundance, and 13C-MAOC content. Co-occurrence networks of phagotrophic protists and bacteria were more connected in soil with the N inoculum added than in soil with the NP inoculum added. P replenishment strengthened bacterial 13C assimilation (i.e., 13C-phospholipid fatty acid content), which negatively (P < 0.05) correlated with the number and relative abundance of phagotrophic Cercozoa. Together, these results suggested that P fertilization boosts MAOC formation associated with phagotrophic protists. Our study paves the way for future research to harness the potential of protists to promote belowground C accrual in agroecosystems.


Assuntos
Fósforo , Solo , Fósforo/metabolismo , Carbono/metabolismo , Microbiologia do Solo , Minerais/metabolismo , Bactérias/genética , Bactérias/metabolismo , Fertilizantes/análise , Fertilização
6.
J Nanobiotechnology ; 21(1): 364, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794487

RESUMO

The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.


Assuntos
Exossomos , MicroRNAs , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Linfócitos T Reguladores/metabolismo , Recuperação de Função Fisiológica , Exossomos/metabolismo , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Barreira Hematoencefálica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
7.
Cell Mol Life Sci ; 80(1): 2, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478290

RESUMO

Secondary spinal cord injury is caused by an inflammatory response cascade, and the process is irreversible. The immune system, as a mediator of inflammation, plays an important role in spinal cord injury. The spinal cord retains its immune privilege in a physiological state. Hence, elucidating the mechanisms by which peripheral immune cells are recruited to the lesion site and function after spinal cord injury is meaningful for the exploration of clinical therapeutic targets. In this review, we provide an overview of the multifaceted roles of peripheral immune cells in spinal cord injury.


Assuntos
Traumatismos da Medula Espinal , Humanos
8.
J Nanobiotechnology ; 20(1): 529, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514078

RESUMO

Neuroinflammation is an important cause of poor prognosis in patients with spinal cord injury. pyroptosis is a new type of inflammatory cell death. Treg cells has been shown to play an anti-inflammatory role in a variety of inflammatory diseases, including inflammatory bowel disease, amyotrophic lateral sclerosis, and arthritis. However, little is known about Treg cells' potential role in pyroptosis following spinal cord injury. The aim of this research was to look into the effect of Treg cells to motor function recovery, pyroptosis and the mechanism behind it after SCI. Here, we found that pyroptosis mainly occurred in microglia on the seventh day after spinal cord injury. Konckout Treg cells resulted in widely pyroptosis and poor motor recovery after SCI. In conversely, over-infiltration of Treg cell in mice by tail vein injection had beneficial effects following SCI.Treg cell-derived exosomes promote functional recovery by inhibiting microglia pyroptosis in vivo. Bioinformatic analysis revealed that miRNA-709 was significantly enriched in Treg cells and Treg cell-secreted exosomes. NKAP has been identified as a miRNA-709 target gene. Moreover, experiments confirmed that Treg cells targeted the NKAP via exosomal miR-709 to reduce microglia pyroptosis and promote motor function recovery after SCI. More importantly, The miR-709 overexpressed exosomes we constructed significantly reduced the inflammatory response and improved motor recovery after spinal cord injury. In brief, our findings indicate a possible mechanism for communication between Treg cells and microglia, which opens up a new perspective for alleviating neuroinflammation after SCI.


Assuntos
Exossomos , MicroRNAs , Traumatismos da Medula Espinal , Animais , Camundongos , Exossomos/metabolismo , Microglia/metabolismo , MicroRNAs/metabolismo , Doenças Neuroinflamatórias , Piroptose , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/metabolismo , Linfócitos T Reguladores/metabolismo
9.
Lab Invest ; 101(10): 1363-1370, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34234270

RESUMO

The wound-healing process is a natural response to burn injury. Resveratrol (RES) may have potential as a therapy for wound healing, but how and whether RES regulates skin repair remains poorly understood. Human epidermal keratinocyte (HaCaT) cells were treated with lipopolysaccharide (LPS), and a mouse skin wound-healing model was established. Cell viability and apoptosis were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide or flow cytometry. Cell proliferation was assessed by cell viability and colony-formation analyses. Cell migration was tested by wound-healing analysis. The microRNA-212 (miR-212) and caspase-8 (CASP8) levels were determined by quantitative reverse transcription polymerase chain reaction and western blotting. The correlation between miR-212 and CASP8 was analyzed by dual-luciferase reporter analysis. Skin wound healing in mice was assessed by measuring the wound area and gap after hematoxylin-eosin (HE) staining. RES reduced the LPS-induced reduction in viability and apoptosis in HaCaT cells. miR-212 expression was reduced by LPS and increased by exposure to RES. RES promoted cell proliferation and migration after LPS treatment by increasing miR-212 levels. CASP8 was a target of miR-212. CASP8 silencing promoted cell proliferation and migration, which was reversed by miR-212 knockdown in LPS-treated HaCaT cells. RES promoted skin wound healing in mice, which was reduced by miR-212 knockdown. Thus, RES facilitates cell proliferation and migration in LPS-treated HaCaT cells and promotes skin wound-healing in a mouse model by regulating the miR-212/CASP8 axis.


Assuntos
Caspase 8/metabolismo , MicroRNAs/metabolismo , Resveratrol/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
J Sci Food Agric ; 101(6): 2472-2482, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33034040

RESUMO

BACKGROUND: Exoinulinase catalyzes the successive removal of individual fructose moiety from the non-reducing end of the inulin molecule, which is useful for biotechnological applications like producing fructan-based non-grain biomass energy and high-fructose syrup. In this study, an exoinulinase (KmINU) from Kluyveromyces marxianus DSM 5418 was tailored for increased catalytic activity and acidic adaptation for inulin hydrolysis processes by rational site-directed mutagenesis. RESULTS: Three mutations, S124Y, N158S and Q215V distal to the catalytic residues of KmINU were designed and heterologously expressed in Pichia pastoris GS115. Compared to the wild-type, S124Y shifted the pH-activity profile towards acidic pH values and increased the catalytic activity and catalytic efficiency by 59% and 99% to 688.4 ± 17.03 s-1 and 568.93 L mmol-1 s-1 , respectively. N158S improved the catalytic activity under acidic pH conditions, giving a maximum value of 464.06 ± 14.06 s-1 on inulin at pH 4.5. Q215V markedly improved the substrate preference for inulin over sucrose by 5.56-fold, and showed catalytic efficiencies of 208.82 and 6.88 L mmol-1 s-1 towards inulin and sucrose, respectively. Molecular modeling and computational docking indicated that structural reorientation may underlie the increased catalytic activity, acidic adaptation and substrate preference. CONCLUSIONS: The KmINU mutants may serve as industrially promising candidates for inulin hydrolysis. Protein engineering of exoinulinase here provides a successful example of the extent to which mutating non-conserved substrate recognition and binding residues distal to the active site can be used for industrial enzyme improvements. © 2020 Society of Chemical Industry.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Kluyveromyces/enzimologia , Ácidos/metabolismo , Catálise , Estabilidade Enzimática , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Inulina/metabolismo , Cinética , Kluyveromyces/química , Kluyveromyces/genética , Mutagênese Sítio-Dirigida , Engenharia de Proteínas
12.
J Surg Res ; 200(1): 392-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26303518

RESUMO

BACKGROUND: Ear reconstruction is one of the most complicated and challenging techniques in plastic surgery because of the histologic and anatomic properties of the ear. Success depends on fitting the auriform cartilage scaffold into the overlying skin, but current approaches can just give results that are not lifelike and can lead to complications. MATERIALS AND METHODS: A novel double-capsule, double-valve plastic ear expander was designed and implanted subcutaneously on either side of the dorsum of six New Zealand white rabbits (two expanders per rabbit). The outer capsule was expanded by injecting approximately 120 mL of physiological saline, then withdrawing the liquid on two occasions. Next, the ear-shaped inner capsule was filled with high-hardness plaster, and the external capsule was emptied such that the expanded skin flap and external capsule responded to the negative pressure and closed over the ear-shaped inner capsule. As a result, the skin flap adopted an ear shape. The ear expander was left in place for 4 wk, removed with the help of a mini-incision, and stripped of its fibrous capsule. To simulate human ear reconstruction, the expander was replaced with an auriform silicone prosthesis, and the effects of auricular reconstruction were observed dynamically. RESULTS: All 12 skin flaps maintained abundant blood supply, created a clear outline of the ear framework, and produced a lifelike result. No complications were observed during the 4-wk observation period. CONCLUSIONS: The expanded skin flaps described here can mold to the desired contours and appear lifelike, as well as maintain abundant blood supply. This may provide a simpler approach to total ear reconstruction that reduces risk of complications.


Assuntos
Orelha Externa/cirurgia , Procedimentos de Cirurgia Plástica/instrumentação , Retalhos Cirúrgicos , Dispositivos para Expansão de Tecidos , Animais , Feminino , Avaliação de Resultados em Cuidados de Saúde , Coelhos , Procedimentos de Cirurgia Plástica/métodos , Expansão de Tecido/instrumentação , Expansão de Tecido/métodos
13.
Microb Ecol ; 70(1): 209-18, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25391237

RESUMO

In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.


Assuntos
Produção Agrícola/métodos , Fungos/genética , Microbiota , Microbiologia do Solo , Vanilla/crescimento & desenvolvimento , Sequência de Bases , China , Biologia Computacional , Primers do DNA/genética , DNA Espaçador Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Fungos/crescimento & desenvolvimento , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Solo/química
14.
Curr Microbiol ; 71(3): 357-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26126832

RESUMO

Bacillus subtilis B96-II is a broad-spectrum biological control strain. It effectively suppresses soil-borne fungal diseases in vegetables. A green fluorescence protein (GFP) was expressed in B96-II to detect migration of B96-II into the root and stem of asparagus. The GFP-tagged B96-II (B96-II-GFP) strain exhibited bright green fluorescence under a fluorescence microscope. GFP was stable and had no apparent effects on the growth of the strain. Asparagus plants were planted in the soil inoculated with B96-II-GFP. Our results showed that B96-II-GFP was detected in both the root and stem 15, 30, and 45 days after the asparagus seedlings were planted. B96-II-GFP was also detected in leaves but at a lower concentration. The highest concentration was detected in 15 days, and the number of bacteria decreased subsequently irrespective of duration of growth or sampling period. The highest concentration of B96-II-GFP was present in the root base suggesting that the root base served as the hub of bacterial migration from the soil to the stem.


Assuntos
Asparagus/microbiologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/química , Bacillus subtilis/genética , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Fatores de Tempo
15.
Biochem Biophys Res Commun ; 453(3): 533-8, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25285629

RESUMO

Pancreatic cancer remains fatal to the fast majority of affected patients. Activation of phosphoinositide-3 kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) pathway plays an important role in pancreatic cancer progression and chemo-resistance. In the present study, we examined the activity of GDC-0980, a novel class I PI3K/mTOR kinase inhibitor, against pancreatic cancer cells in vitro. GDC-0980 inhibited AKT-mTOR activation and pancreatic cancer cell (PANC-1 and Capan-1 lines) survival. In both cancer cell lines, GDC-0980 simultaneously activated apoptosis and autophagy, the latter was detected by p62 degradation, Beclin-1 upregulation and light chain 3B (LC3B) conversion from a cytosolic (LC3B-I) to a membrane-bound (LC3B-II) form. Autophagy inhibitors including 3-methyladenine, hydroxychloroquine, NH4Cl and bafilomycin A1 enhanced apoptosis and cytotoxicity by GDC-0980, such an effect was reversed by caspase inhibitors (z-VAD-FMK and z-ITED-FMK). Furthermore, knockdown of LC3B or Beclin-1 through siRNA increased GDC-0980-induced anti-pancreatic cancer cell activity. Thus, inhibition of autophagy sensitizes GDC-0980-induced anti-pancreatic cancer activity, suggesting a novel therapeutic strategy for GDC-0980 sensitization.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Pancreáticas/patologia , Pirimidinas/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Pancreáticas/metabolismo
16.
Clin Lab ; 60(1): 29-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600972

RESUMO

BACKGROUND: Wnt-induced secreted protein-1 (WISP-1/CCN4) is a member of the CCN family growth factors, and its role in liver fibrosis is largely unknown. METHODS: For in vitro, hepatic stellate cells (HSCs) were isolated from Sprague-Dawley rats. Expression of WISP-1 during progressive activation of cultured rat HSCs was analyzed by qRT-PCR. The effects of TNF-a and TGF-beta1 on WISP-1 expression were analyzed in stellate cell lines HSC-T6 and LX-2. The effect of exogenous WISP-1 protein on LX-2 proliferation was examined. For in vivo, expressions of WISP-1 in fibrotic liver of a carbon tetrachloride (CCl4)-induced fibrosis rat model were analyzed by qRT-PCR and immunohistochemistry. RESULTS: In vitro, WISP-1 was increasingly expressed during progressive activation of cultured rat HSCs. WISP-1 was significantly induced in HSC-T6 cells by TNF-a and in LX-2 cells by TGF-beta1. Recombinant WISP-1 protein promoted LX-2 proliferation in a dose-dependent manner. In vivo, both mRNA and protein expression levels of WISP-1 were increased significantly in experimental hepatic fibrosis model. CONCLUSIONS: Our results showed the upregulation of WISP-1 in both in vitro and in vivo liver fibrosis models, and WISP-1 stimulated the proliferation of HSCs in vitro. These results may be helpful to elucidate the exact role of WISP-1 in liver fibrogenesis.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Tetracloreto de Carbono/toxicidade , Cirrose Hepática/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Sequência de Bases , Proteínas de Sinalização Intercelular CCN/genética , Células Cultivadas , Primers do DNA , Imuno-Histoquímica , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365252

RESUMO

A key aspect of "One Health" is to comprehend how antibiotic resistomes evolve naturally. In this issue, Nguyen and colleagues pioneered an in situ investigation on the impact of protist predations on the soil microbial community and its antibiotic resistance genes (ARGs). They found that bacterivorous protists consistently increased the abundance of ARGs, such as tetracycline resistant genes. Indeed, antibiotic production is a common strategy for bacteria to evade protist predation. The rise of ARGs can be explained by the balance between antibiotic producers and resisters shaped by predatory selection. This work suggests that ARG enrichment due to biotic interactions may be less worrisome than previously thought. Unless, these ARGs are carried by or disseminated among pathogens. Therefore, it is essential to monitor the occurrence, dissemination and pathogenic hosts of ARGs, enhancing our capacity to combat antibiotic resistance.


Assuntos
Genes Bacterianos , Solo , Animais , Comportamento Predatório , Microbiologia do Solo , Antibacterianos/farmacologia
18.
Curr Mol Med ; 24(2): 252-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36631922

RESUMO

BACKGROUND: Hyperglycemia is widespread in the world's population, increasing the risk of many diseases. This study aimed to explore the regulatory effect and mechanism of astragaloside IV (ASIV)-mediated endothelial progenitor cells (EPCs) exosomal LINC01963 in endothelial cells (HUVECs) impaired by high glucose. METHODS: Morphologies of exosomes were observed by light microscope and electron microscope. Immunofluorescence was used to identify EPCs and detect the expressions of caspase-1. LINC01963 was detected by quantitative reverse transcription PCR. NLRP3, ASC, and caspase-3 were detected by Western Blot. Nanoparticle tracking analysis was carried out to analyze the exosome diameter. High-throughput sequencing was applied to screen target lncRNAs. The proliferation of endothelial cells was measured by cell counting kit-8 assay. The apoptosis level of HUVECs was detected by flow cytometry and TdT-mediated dUTP Nick-End labeling. The levels of IL- 1ß, IL-18, ROS, SOD, MDA, and LDH were measured by enzyme-linked immunosorbent assay. RESULTS: ASIV could promote the secretion of the EPC exosome. LINC01963 was obtained by high-throughput sequencing. It was observed that high glucose could inhibit the proliferation, reduce the level of SOD, the expression of NLRP3, ASC, and caspase- 1, increase the levels of IL-1ß, IL-18, ROS, MDA, and LDH, and promote apoptosis of HUVECs. Whereas LINC01963 could inhibit the apoptosis of HUVECs, the increase the expression of NLRP3, ASC, and caspase-1, and decrease the levels of IL-1ß, IL-18, ROS, MDA, and LDH. CONCLUSION: EPCs exosomal LINC01963 play an inhibitory role in high glucoseinduced pyroptosis and oxidative stress of HUVECs. This study provides new ideas and directions for treating hyperglycemia and researching exosomal lncRNAs.


Assuntos
Células Progenitoras Endoteliais , Hiperglicemia , RNA Longo não Codificante , Saponinas , Triterpenos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Células Progenitoras Endoteliais/metabolismo , Interleucina-18 , Piroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Caspase 1 , Glucose/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
19.
Int Immunopharmacol ; 126: 111283, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38035407

RESUMO

Diabetes care, particularly for diabetic foot ulcers (DFUs)-related complications, increases treatment costs substantially. Failure to provide timely and appropriate treatment for severe DFUs significantly increases amputation risk. Neovascularization and macrophage polarization play an important role in diabetic wound healing during different stages of the wound repair process. Therefore, a new treatment method that promotes neovascularization and macrophage polarization may accelerate diabetic wound healing. ß-sitosterol possesses anti-inflammatory, lipid-lowering, and antidiabetic properties. However, its therapeutic potential in diabetic wound healing remains underexplored. This study evaluated the healing effects of ß-sitosterol on diabetic ulcer wounds in rats. We found that ß-sitosterol can promote angiogenesis, alternatively activated macrophages (M2 macrophage) proliferation, and collagen synthesis in diabetic wounds. Transcriptomics analysis and proteomics analysis revealed that MAPK, mTOR and VEGF signaling pathways were enriched in ß-sitosterol-treated wounds. Molecular docking revealed Ndufb5 maybe the target of ß-sitosterol-treated wounds. Our findings confirm the significant diabetic wound healing effects of ß-sitosterol in a rat model. ß-sitosterol treatment to diabetic wounds accelerates wound healing through promoting M2 macrophage proliferation and angiogenesis. Interestingly, we also found that the process of M2 macrophage proliferation accompanies angiogenesis. Thus, ß-sitosterol may be a promising therapeutic approach to enhance diabetic wound healing and reduce amputation in diabetes.


Assuntos
Diabetes Mellitus , Pé Diabético , Ratos , Animais , Angiogênese , Simulação de Acoplamento Molecular , Macrófagos , Neovascularização Patológica/metabolismo
20.
Curr Mol Med ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38299414

RESUMO

BACKGROUND: Chronic hyperglycemia in diabetes induces oxidative stress, leading to damage to the vascular system. In this study, we aimed to evaluate the effects and mechanisms of AS-IV-Exos in alleviating endothelial oxidative stress and dysfunction caused by high glucose (HG). METHODS: Histopathological changes were observed using HE staining, and CD31 expression was assessed through immunohistochemistry (IHC). Cell proliferation was evaluated through CCK8 and EDU assays. The levels of ROS, SOD, and GSH-Px in the skin tissues of each group were measured using ELISA. Cell adhesion, migration, and tube formation abilities were assessed using adhesion, Transwell, and tube formation experiments. ROS levels in HUVEC cells were measured using flow cytometry. The levels of miR-210 and Nox2 were determined through quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression of Nox2, SOD, GSH-Px, CD63, and CD81 was confirmed using WB. RESULTS: The level of miR-210 was reduced in diabetes-induced skin damage, while the levels of Nox2 and ROS increased. Treatment with AS-IV increased the level of miR-210 in EPC-Exos. Compared to Exos, AS-IV-Exos significantly reduced the proliferation rate, adhesion number, migration speed, and tube-forming ability of HGdamaged HUVEC cells. AS-IV-Exos also significantly decreased the levels of SOD and GSH-Px in HG-treated HUVEC cells and reduced the levels of Nox2 and GSH-Px. However, ROS levels and Nox2 could reverse this effect. CONCLUSION: AS-IV-Exos effectively alleviated endothelial oxidative stress and dysfunction induced by HG through the miR-210/Nox2/ROS pathway.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa