RESUMO
A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.
Assuntos
COVID-19/imunologia , Megacariócitos/imunologia , Monócitos/imunologia , RNA Viral , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , China , Estudos de Coortes , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , RNA Viral/isolamento & purificação , Análise de Célula Única , Transcriptoma/imunologia , Adulto JovemRESUMO
In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.
Assuntos
Fator de Transcrição E2F1 , Histona Desmetilases com o Domínio Jumonji , Meiose , Espermatogênese , Animais , Masculino , Camundongos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Espermatogênese/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Fator C1 de Célula Hospedeira/metabolismo , Fator C1 de Célula Hospedeira/genética , Histonas/metabolismo , Histonas/genética , Camundongos Knockout , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Histona DesmetilasesRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and deficits in cognitive domains. Low choline levels, oxidative stress, and neuroinflammation are the primary mechanisms implicated in AD progression. Simultaneous inhibition of acetylcholinesterase (AChE) and reactive oxygen species (ROS) production by a single molecule may provide a new breath of hope for AD treatment. Here, we describe donepezil-tacrine hybrids as inhibitors of AChE and ROS. Four series of derivatives with a ß-amino alcohol linker were designed and synthesized. In this study, the target compounds were evaluated for their ability to inhibit AChE and butyrylcholinesterase (BuChE) in vitro, using tacrine (hAChE, IC50 = 305.78 nM; hBuChE, IC50 = 56.72 nM) and donepezil (hAChE, IC50 = 89.32 nM; hBuChE, IC50 = 9137.16 nM) as positive controls. Compound B19 exhibited an excellent and balanced inhibitory potency against AChE (IC50 = 30.68 nM) and BuChE (IC50 = 124.57 nM). The cytotoxicity assays demonstrated that the PC12 cell viability rates of compound B19 (84.37 %) were close to that of tacrine (87.73 %) and donepezil (79.71 %). Potential therapeutic effects in AD were evaluated using the neuroprotective effect of compounds against H2O2-induced toxicity, and compound B19 (68.77 %) exhibited substantially neuroprotective activity at the concentration of 25 µM, compared with the model group (30.34 %). Furthermore, compound B19 protected PC12 cells from H2O2-induced apoptosis and ROS production. These properties of compound B19 suggested that it was a multi-functional agent with AChE inhibition, anti-oxidative, anti-inflammatory activities, and low toxicity and that it deserves further investigation as a promising agent for AD treatment.
Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Ratos , Tacrina/farmacologia , Tacrina/uso terapêutico , Donepezila/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Simulação de Acoplamento Molecular , Relação Estrutura-AtividadeRESUMO
VQ motif-containing proteins play important roles in plant abiotic and biotic stresses. In this study, we cloned the VQ protein gene TaVQ4-D that is induced by drought stress. Arabidopsis and wheat plants overexpressing TaVQ4-D showed increased tolerance to drought stress. In contrast, wheat lines in which TaVQ4-D expression had been silenced showed decreased drought tolerance. Under drought stress conditions, the contents of superoxide dismutase and proline increased and the content of malondialdehyde decreased in transgenic wheat plants overexpressing TaVQ4-D compared with the wild type. At the same time, the expression of reactive oxygen species-scavenging-related genes and stress-related genes was up-regulated. However, plants of TaVQ4-D-silenced wheat lines showed decreased activities of antioxidant enzymes and reduced expression of some stress-related and antioxidant-related genes. In addition, the TaVQ4-D protein physically interacts with two mitogen-activated protein kinases (MPK3 and MPK6) and plays a role in plant drought stress as the phosphorylated substrates of MPK3 and MPK6. In summary, the results of our study suggest that TaVQ4-D can positively regulate drought stress tolerance in wheat.
Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência à Seca , Triticum/metabolismo , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de PlantasRESUMO
In the hexaploid wheat genome, there are three Gα genes, three Gß and twelve Gγ genes, but the function of Gß in wheat has not been explored. In this study, we obtained the overexpression of TaGB1 Arabidopsis plants through inflorescence infection, and the overexpression of wheat lines was obtained by gene bombardment. The results showed that under drought and NaCl treatment, the survival rate of Arabidopsis seedlings' overexpression of TaGB1-B was higher than that of the wild type, while the survival rate of the related mutant agb1-2 was lower than that of the wild type. The survival rate of wheat seedlings with TaGB1-B overexpression was higher than that of the control. In addition, under drought and salt stress, the levels of superoxide dismutase (SOD) and proline (Pro) in the wheat overexpression of TaGB1-B were higher than that of the control, and the concentration of malondialdehyde (MDA) was lower than that of the control. This indicates that TaGB1-B could improve the drought resistance and salt tolerance of Arabidopsis and wheat by scavenging active oxygen. Overall, this work provides a theoretical basis for wheat G-protein ß-subunits in a further study, and new genetic resources for the cultivation of drought-tolerant and salt-tolerant wheat varieties.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta da Proteína de Ligação ao GTP , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Triticum/genética , Triticum/metabolismo , Secas , Estresse Fisiológico/genética , Plântula/genética , Plântula/metabolismo , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Subunidades beta da Proteína de Ligação ao GTP/genéticaRESUMO
BACKGROUND: Three-amino-loop-extension (TALE) superfamily genes are widely present in plants and function directly in plant growth and development and abiotic stress response. Although TALE genes have been studied in many plant species, members of the TALE family have not been identified in wheat. RESULTS: In this study, we identified 70 wheat TALE protein candidate genes divided into two subfamilies, KNOX (KNOTTED-like homeodomain) and BEL1-like (BLH/BELL homeodomain). Genes in the same subfamily or branch in the phylogenetic tree are similar in structure, and their encoded proteins have similar motifs and conserved structures. Wheat TALE genes are unevenly distributed on 21 chromosomes and expanded on the fourth chromosome. Through gene duplication analysis, 53 pairs of wheat TALE genes were determined to result from segmental duplication events, and five pairs were caused by tandem duplication events. The Ka/Ks between TALE gene pairs indicates a strong purification and selection effect. There are multiple cis-elements in the 2000 bp promoter sequence that respond to hormones and abiotic stress, indicating that most wheat TALE genes are involved in the growth, development, and stress response of wheat. We also studied the expression profiles of wheat TALE genes in different developmental stages and tissues and under different stress treatments. We detected the expression levels of four TALE genes by qRT-PCR, and selected TaKNOX11-A for further downstream analysis. TaKNOX11-A enhanced the drought and salt tolerances of Arabidopsis thaliana. TaKNOX11-A overexpressing plants had decreased malondialdehyde content and increased proline content, allowing for more effective adaptation of plants to unfavorable environments. CONCLUSIONS: We identified TALE superfamily members in wheat and conducted a comprehensive bioinformatics analysis. The discovery of the potential role of TaKNOX11-A in drought resistance and salt tolerance provides a basis for follow-up studies of wheat TALE family members, and also provides new genetic resources for improving the stress resistance of wheat.
Assuntos
Proteínas de Plantas , Triticum , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Triticum/genéticaRESUMO
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, sublineages BA.1 and BA.2, recently became the dominant variants of concern (VOCs) with significantly higher transmissibility than any other variant appeared and markedly greater resistance to neutralization antibodies and original ancestral WA1 spike-matched vaccine. Therefore, it is urgent to develop vaccines against VOCs like Omicron. Unlike the new booming messenger RNA (mRNA) vaccine, protein vaccines have been used for decades to protect people from various kinds of viral infections and have advantages with their inexpensive production protocols and their relative stability in comparison to the mRNA vaccine. Here, we show that sera from BA.1 spike protein vaccinated mice mainly elicited neutralizing antibodies against BA.1 itself. However, a booster with BA.1 spike protein or a bivalent vaccine composed of D614G and BA.1 spike protein-induced not only potent neutralizing antibody response against D614G and BA.1 pseudovirus, but also against BA.2, other four SARS-CoV-2 VOCs (Alpha, Beta, Gamma, and Delta) and SARS-CoV-2-related coronaviruses (pangolin CoV GD-1 and bat CoV RsSHC014). The two recombinant spike protein vaccines method described here lay a foundation for future vaccine development for broad protection against pan-sarbecovirus.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Combinadas , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologiaRESUMO
The peptidase M24 (Metallopeptidase 24, M24) superfamily is essential for plant growth, stress response, and pathogen defense. At present, there are few systematic reports on the identification and classification of members of the peptidase M24 proteins superfamily in wheat. In this work, we identified 53 putative candidate TaM24 genes. According to the protein sequences characteristics, these members can be roughly divided into three subfamilies: I, II, III. Most TaM24 genes are complex with multiple exons, and the motifs are relatively conserved in each sub-group. Through chromosome mapping analysis, we found that the 53 genes were unevenly distributed on 19 wheat chromosomes (except 3A and 3D), of which 68% were in triads. Analysis of gene duplication events showed that 62% of TaM24 genes in wheat came from fragment duplication events, and there were no tandem duplication events to amplify genes. Analysis of the promoter sequences of TaM24 genes revealed that cis-acting elements were rich in response elements to drought, osmotic stress, ABA, and MeJA. We also studied the expression of TaM24 in wheat tissues at developmental stages and abiotic stress. Then we selected TaM24-9 as the target for further analysis. The results showed that TaM24-9 genes strengthened the drought and salt tolerance of plants. Overall, our analysis showed that members of the peptidase M24 genes may participate in the abiotic stress response and provided potential gene resources for improving wheat resistance.
Assuntos
Regulação da Expressão Gênica de Plantas , Triticum , Genoma de Planta , Família Multigênica , Peptídeo Hidrolases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Triticum/metabolismoRESUMO
AIM: To investigate the effects of piperlongumine (PL), an anticancer alkaloid from long pepper plants, on the primary myeloid leukemia cells from patients and the mechanisms of action. METHODS: Human BM samples were obtained from 9 patients with acute or chronic myeloid leukemias and 2 patients with myelodysplastic syndrome (MDS). Bone marrow mononuclear cells (BMMNCs) were isolated and cultured. Cell viability was determined using MTT assay, and apoptosis was examined with PI staining or flow cytometry. ROS levels in the cells were determined using DCFH-DA staining and flow cytometry. Expression of apoptotic and autophagic signaling proteins was analyzed using Western blotting. RESULTS: PL inhibited the viability of BMMNCs from the patients with myeloid leukemias (with IC50 less than 20 µmol/L), but not that of BMMNCs from a patient with MDS. Furthermore, PL (10 and 20 µmol/L) induced apoptosis of BMMNCs from the patients with myeloid leukemias in a dose-dependent manner. PL markedly increased ROS levels in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the antioxidant N-acetyl-L-cysteine abolished PL-induced ROS accumulation and effectively reduced PL-induced cytotoxicity. Moreover, PL markedly increased the expression of the apoptotic proteins (Bax, Bcl-2 and caspase-3) and autophagic proteins (Beclin-1 and LC3B), and phosphorylation of p38 and JNK in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the specific p38 inhibitor SB203580 or the specific JNK inhibitor SP600125 partially reversed PL-induced ROS production, apoptotic/autophagic signaling activation and cytotoxicity. CONCLUSION: Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Dioxolanos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antioxidantes/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Concentração Inibidora 50 , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Fosforilação , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidoresRESUMO
Autism or autism spectrum disorders is the most common central nervous system developmental disorder in children. Until now, there is still no effective drug for autism. The latest breakthrough advance in autism study is the discovery of autism-related gene de novo mutation by the whole exon sequencing. Among multiple de novo gene mutations identified in autism, the chromodomain helicase DNA-binding protein 8 (CHD8) is the most frequently mutated gene, suggesting that CHD8 is an important candidate gene for autism. CHD8 binds to various other proteins such as p53 and beta-catenin to regulate gene expression. The discovery of autism-candidate genes provides novel molecular targets for the diagnosis and treatment of autism.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Mutação , Proteínas de Ligação a DNA , Éxons , Expressão Gênica , Humanos , Fatores de TranscriçãoRESUMO
A revision of the genus Apterodela Rivalier, 1950 is presented. The new subgenus Protoapterodela subgen. nov. with Apterodela shirakii (W. Horn, 1927) as its type species is established. The lectotype and the paralectotype of Cicindela ovipennis Bates, 1883 and Cicindela shirakii W. Horn, 1927 as well as the neotype of Cicindela lobipennis Bates, 1888 are designated. Apterodela (s. str.) bivirgulata (Fairmaire, 1889), stat. rest. is extracted from the synonym of Apterodela (s. str.) lobipennis (Bates, 1888) and is considered as a separate species. Two new species and one new subspecies from China are described as well: Apterodela (s. str.) alopecomma sp. nov.from Sichuan Province, Apterodela (s. str.) latissima sp. nov.from Yunnan Province, and Apterodela (s. str.) bivirgulata occidentalis ssp. nov.from Qinghai, Gansu, Shaanxi, Henan, Shanxi, Sichuan Provinces, and Inner Mongolia Autonomus Region. A key to identifying the species of the genus Apterodela is provided, and its taxonomic status is examined.
Assuntos
Besouros , Animais , Distribuição Animal , ChinaRESUMO
Background: Optimizing adjuvant is one of the critical methods to improve the vaccine. 3M-052, a novel TLR7/8 agonist which was designed for slow dissemination at the injection site, has a potential as adjuvant, but its performance as a vaccine adjuvant for SARS-CoV-2 (B.1.617.2) spike protein has not been studied. The present study aimed to evaluate the effect of Alum-3M-052 as an adjuvant to improve mice serum antibody titers and pseudovirus neutralization efficiency. Method: Female Balb/c mice were immunized 3 times at day 0, 7 and 21 intramuscularly with SARS-CoV-2 (B.1.617.2) spike protein and adjuvant (Alum or Alum-3M-052). Mice serum was collected weekly since day 7. Antibody titers of mice serum anti-SARS-CoV-2 (B.1.617.2) IgG and IgM were detected by ELISA. Inhibition rates of mice serum blocking SARS-CoV-2 (B.1.617.2) spike protein binding to ACE2 were detected by SARS-CoV-2 (B.1.617.2) Inhibitor Screening Kit. Neutralization efficiencies of mice serum against both SARS-CoV-2 (BA.2.12.1) pseudovirus and SARS-CoV-2 (B.1.617.2) pseudovirus were detected by pseudovirus neutralizing assay. Result: Serum of mice immunized by SARS-CoV-2 (B.1.617.2) spike protein adjuvanted with Alum-3M-052 had highest antibody titers and higher neutralization efficiency against both SARS-CoV-2 (BA.2.12.1) pseudovirus and SARS-CoV-2 (B.1.617.2) pseudovirus. Besides, neutralization efficiency of anti-SARS-CoV-2 (B.1.617.2) spike protein antibody against SARS-CoV-2 (BA.2.12.1) pseudovirus was lower than that of SARS-CoV-2 (B.1.617.2) pseudovirus. Conclusion: Alum-3M-052 rapidly increased the titer of anti-SARS-CoV-2 (B.1.617.2) spike protein neutralizing antibodies and enhanced the neutralization ability against pseudoviruses and variants. This study provided evidence for the application of Alum-3M-052 as an adjuvant in COVID-19 vaccines production.
Assuntos
Formação de Anticorpos , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Feminino , Humanos , Camundongos , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
Echinococcosis is an important zoonotic infectious disease that seriously affects human health. Conventional diagnosis of echinococcosis relies on the application of large-scale imaging equipment, which is difficult to promote in remote areas. Meanwhile, surgery and chemotherapy for echinococcosis can cause serious trauma and side effects. Thus, the development of simple and effective treatment strategies is of great significance for the diagnosis and treatment of echinococcosis. Herein, we designed a phototheranostic system utilizing neutrophil-membrane-camouflaged indocyanine green liposomes (Lipo-ICG) for active targeting the near-infrared fluorescence diagnosis and photothermal therapy of echinococcosis. The biomimetic Lipo-ICG exhibits a remarkable photo-to-heat converting performance and desirable active-targeting features by the inflammatory chemotaxis of the neutrophil membrane. In-vitro and in-vivo studies reveal that biomimetic Lipo-ICG with high biocompatibility can achieve in-vivo near-infrared fluorescence imaging and phototherapy of echinococcosis in mouse models. Our research is the first to apply bionanomaterials to the phototherapy of echinococcosis, which provides a new standard for the convenient and noninvasive detection and treatment of zoonotic diseases.
Assuntos
Equinococose , Nanopartículas , Animais , Biomimética , Equinococose/diagnóstico por imagem , Equinococose/terapia , Verde de Indocianina/uso terapêutico , Lipossomos , CamundongosRESUMO
The combination of immune checkpoint blockade (ICB) with chemotherapy significantly improves clinical benefit of cancer treatment. Since chemotherapy is often associated with adverse events, concomitant treatment with drugs managing side effects of chemotherapy is frequently used in the combination therapy. However, whether these ancillary drugs could impede immunotherapy remains unknown. Here, we showed that ∆9-tetrahydrocannabinol (THC), the key ingredient of drugs approved for the treatment of chemotherapy-caused nausea, reduced the therapeutic effect of PD-1 blockade. The endogenous cannabinoid anandamide (AEA) also impeded antitumor immunity, indicating an immunosuppressive role of the endogenous cannabinoid system (ECS). Consistently, high levels of AEA in the sera were associated with poor overall survival in cancer patients. We further found that cannabinoids impaired the function of tumor-specific T cells through CNR2. Using a knock-in mouse model expressing a FLAG-tagged Cnr2 gene, we discovered that CNR2 binds to JAK1 and inhibits the downstream STAT signaling in T cells. Taken together, our results unveiled a novel mechanism of the ECS-mediated suppression on T-cell immunity against cancer, and suggest that cannabis and cannabinoid drugs should be avoided during immunotherapy.
Assuntos
Canabinoides , Cannabis , Imunossupressores , Neoplasias , Linfócitos T , Animais , Canabinoides/efeitos adversos , Canabinoides/farmacologia , Dronabinol/efeitos adversos , Dronabinol/farmacologia , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/farmacologia , Janus Quinases , Camundongos , Neoplasias/imunologia , Receptor CB2 de Canabinoide/genética , Fatores de Transcrição STAT , Transdução de Sinais , Linfócitos T/efeitos dos fármacosRESUMO
The SARS-CoV-2 Omicron BA.1 variant of concern contains more than 30 mutations in the spike protein, with half of these mutations localized in the receptor-binding domain (RBD). Emerging evidence suggests that these large number of mutations impact the neutralizing efficacy of vaccines and monoclonal antibodies. We investigated the relative contributions of spike protein and RBD mutations in Omicron BA.1 variants on infectivity, cell-cell fusion, and their sensitivity to neutralization by monoclonal antibodies or vaccinated sera from individuals who received homologous (CoronaVac, SinoPharm) or heterologous (CoronaVac-BNT162b2, BioNTech) and nonhuman primates that received a recombinant RBD protein vaccine. Our data overall reveal that the mutations in the spike protein reduced infectivity and cell-cell fusion compared to the D614G variant. The impaired infectivity and cell-cell fusion were dependent on non-RBD mutations. We also find reduced sensitivity to neutralization by monoclonal antibodies and vaccinated sera. However, our results also show that nonhuman primates receiving a recombinant RBD protein vaccine show substantial neutralization activity. Our study sheds light on the molecular differences in neutralizing antibody escape by the Omicron BA.1 variant, and highlights the promise of recombinant RBD vaccines in neutralizing the threat posed by the Omicron BA.1 variant.
RESUMO
Personalized immunotherapy targeting tumor-specific antigens (TSAs) could generate efficient and safe antitumor immune response without damaging normal tissues. Although neoantigen vaccines have shown therapeutic effect in clinic trials, precise prediction of neoantigens from tumor mutations is still challenging. The host antitumor immune response selects and activates T cells recognizing tumor antigens. Hence, T cells engineered with T-cell receptors (TCRs) from these naturally occurring tumor antigen-specific T (Tas) cells in a patient will target personal TSAs in his/her tumor. To establish such a personalized TCR-T cell therapy, we comprehensively characterized T cells in tumor and its adjacent tissues by single-cell mRNA sequencing (scRNA-seq), TCR sequencing (TCR-seq) and in vitro neoantigen stimulation. Compared to bystander T cells circulating among tissues, Tas cells were characterized by tumor enrichment, tumor-specific clonal expansion and neoantigen specificity. We found that CXCL13 is a unique marker for both CD4+ and CD8+ Tas cells. Importantly, TCR-T cells expressing TCRs from Tas cells showed significant therapeutic effects on autologous patient-derived xenograft (PDX) tumors. Intratumoral Tas cell levels measured by CXCL13 expression precisely predicted the response to immune checkpoint blockade, indicating a critical role of Tas cells in the antitumor immunity. We further identified CD200 and ENTPD1 as surface markers for CD4+ and CD8+ Tas cells respectively, which enabled the isolation of Tas cells from tumor by Fluorescence Activating Cell Sorter (FACS) sorting. Overall, our results suggest that TCR-T cells engineered with Tas TCRs are a promising agent for personalized immunotherapy, and intratumoral Tas cell levels determine the response to immunotherapy.
Assuntos
Neoplasias , Linfócitos T , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Humanos , Imunoterapia/métodos , Masculino , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismoRESUMO
Background: Ovarian cancer (OV) is a fatal gynecologic malignancy and has poor survival rate in women over the age of forty. In our study, we aimed to identify genes related to immune microenvironment regulations and explore genes associated with OV prognosis. Methods: The RNA-seq data of GDC TCGA Ovarian Cancer cohort of 376 patients was retrieved from website. Weighted gene co-expression network analysis (WGCNA) and ESTIMATE algorithm were applied to identify the key genes associated with the immune scores. The correlation between key genes and 22 immune cell types were estimated by using CIBERSORT algorithms. Results: WGCNA showed that the pink module was most correlated with the immune score. Seven of 14 key genes (FCRL3, IFNG, KCNA3, LY9, PLA2G2D, THEMIS, and TRAT1) were significantly associated with the OS of OV patients. Correlation analysis showed our key genes positively related to M1 macrophages, CD8 T cells, plasma cells, regulatory T (Treg) cells and activated memory CD4 T cells, and negatively related to naive CD4 T cells, M0 macrophages, activated dendritic cells (DCs) and memory B cells. Kaplan-Meier survival analysis showed that lower abundances of neutrophils and higher abundances of M1 macrophages, plasma cells, T cells gamma delta (γδT) cells and follicular helper T (Tfh) cells predicted better OV prognosis. Conclusion: Forteen key genes related to the immune infiltrating of OV were identified, and seven of them were significantly related to prognosis. These key genes have potential roles in tumor infiltrating immune cells differentiation and proliferation. This study provided potential prognostic markers and immunotherapy targets for OV.
RESUMO
Autophagy plays an important role in cancer. Many studies have demonstrated that autophagy-related genes (ARGs) can act as a prognostic signature for some cancers, but little has been known in low-grade gliomas (LGG). In our study, we aimed to establish a prognostical model based on ARGs and find prognostic risk-related key genes in LGG. In the present study, a prognostic signature was constructed based on a total of 8 ARGs (MAPK8IP1, EEF2, GRID2, BIRC5, DLC1, NAMPT, GRID1, and TP73). It was revealed that the higher the risk score, the worse was the prognosis. Time-dependent ROC analysis showed that the risk score could precisely predict the prognosis of LGG patients. Additionally, four key genes (TGFß2, SERPING1, SERPINE1, and TIMP1) were identified and found significantly associated with OS of LGG patients. Besides, they were also discovered to be strongly related to six types of immune cells which infiltrated in LGG tumor. Taken together, the present study demonstrated the promising potential of the ARG risk score formula as an independent factor for LGG prediction. It also provided the autophagy-related signature of prognosis and potential therapeutic targets for the treatment of LGG.