Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943629

RESUMO

Maize is one of the world's most important staple crops, yet its production is increasingly threatened by the rising frequency of high-temperature stress (HTS). To investigate the genetic basis of anther thermotolerance under field conditions, we performed linkage and association analysis to identify HTS response quantitative trait loci (QTL) using three recombinant inbred line (RIL) populations and an association panel containing 375 diverse maize inbred lines. These analyses resulted in the identification of 16 co-located large QTL intervals. Among the 37 candidate genes identified in these QTL intervals, five have rice or Arabidopsis homologs known to influence pollen and filament development. Notably, one of the candidate genes, ZmDUP707, has been subject to selection pressure during breeding. Its expression is suppressed by HTS, leading to pollen abortion and barren seeds. We also identified several additional candidate genes potentially underly QTL previously reported by other researchers. Taken together, our results provide a pool of valuable candidate genes that could be employed by future breeding programs aiming at enhancing maize HTS tolerance.

2.
BMC Genomics ; 24(1): 384, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430212

RESUMO

BACKGROUND: The chlorophyll content (CC) is a key factor affecting maize photosynthetic efficiency and the final yield. However, its genetic basis remains unclear. The development of statistical methods has enabled researchers to design and apply various GWAS models, including MLM, MLMM, SUPER, FarmCPU, BLINK and 3VmrMLM. Comparative analysis of their results can lead to more effective mining of key genes. RESULTS: The heritability of CC was 0.86. Six statistical models (MLM, BLINK, MLMM, FarmCPU, SUPER, and 3VmrMLM) and 1.25 million SNPs were used for the GWAS. A total of 140 quantitative trait nucleotides (QTNs) were detected, with 3VmrMLM and MLM detecting the most (118) and fewest (3) QTNs, respectively. The QTNs were associated with 481 genes and explained 0.29-10.28% of the phenotypic variation. Additionally, 10 co-located QTNs were detected by at least two different models or methods, three co-located QTNs were identified in at least two different environments, and six co-located QTNs were detected by different models or methods in different environments. Moreover, 69 candidate genes within or near these stable QTNs were screened based on the B73 (RefGen_v2) genome. GRMZM2G110408 (ZmCCS3) was identified by multiple models and in multiple environments. The functional characterization of this gene indicated the encoded protein likely contributes to chlorophyll biosynthesis. In addition, the CC differed significantly between the haplotypes of the significant QTN in this gene, and CC was higher for haplotype 1. CONCLUSION: This study's results broaden our understanding of the genetic basis of CC, mining key genes related to CC and may be relevant for the ideotype-based breeding of new maize varieties with high photosynthetic efficiency.


Assuntos
Clorofila , Zea mays , Zea mays/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fotossíntese , Nucleotídeos
3.
Theor Appl Genet ; 136(9): 182, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555969

RESUMO

KEY MESSAGE: Here, we revealed maize prolificacy highly correlated with domestication and identified a causal gene ZmEN1 located in one novel QTL qGEN261 that regulating maize prolificacy by using multiple-mapping methods. The development of maize prolificacy (EN) is crucial for enhancing yield and breeding specialty varieties. To achieve this goal, we employed a genome-wide association study (GWAS) to analyze the genetic architecture of EN in maize. Using 492 inbred lines with a wide range of EN variability, our results demonstrated significant differences in genetic, environmental, and interaction effects. The broad-sense heritability (H2) of EN was 0.60. Through GWAS, we identified 527 significant single nucleotide polymorphisms (SNPs), involved 290 quantitative trait loci (QTL) and 806 genes. Of these SNPs, 18 and 509 were classified as major effect loci and minor loci, respectively. In addition, we performed a bulk segregant analysis (BSA) in an F2 population constructed by a few-ears line Zheng58 and a multi-ears line 647. Our BSA results identified one significant QTL, qBEN1. Importantly, combining the GWAS and BSA, four co-located QTL, involving six genes, were identified. Three of them were expressed in vegetative meristem, shoot tip, internode and tip of ear primordium, with ZmEN1, encodes an unknown auxin-like protein, having the highest expression level in these tissues. It suggested that ZmEN1 plays a crucial role in promoting axillary bud and tillering to encourage the formation of prolificacy. Haplotype analysis of ZmEN1 revealed significant differences between different haplotypes, with inbred lines carrying hap6 having more EN. Overall, this is the first report about using GWAS and BSA to dissect the genetic architecture of EN in maize, which can be valuable for breeding specialty maize varieties and improving maize yield.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla/métodos , Zea mays/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único , Fenótipo
4.
Mol Breed ; 43(12): 91, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38099287

RESUMO

Starch is a major component of cereals, comprising over 70% of dry weight. It serves as a primary carbon source for humans and animals. In addition, starch is an indispensable industrial raw material. While maize (Zea mays) is a key crop and the primary source of starch, the genetic basis for starch content in maize kernels remains poorly understood. In this study, using an enlarged panel, we conducted a genome-wide association study (GWAS) based on best linear unbiased prediction (BLUP) value for starch content of 261 inbred lines across three environments. Compared with previous study, we identified 14 additional significant quantitative trait loci (QTL), encompassed a total of 42 genes, and indicated that increased marker density contributes to improved statistical power. By integrating gene expression profiling, Gene Ontology (GO) enrichment and haplotype analysis, several potential target genes that may play a role in regulating starch content in maize kernels have been identified. Notably, we found that ZmAPC4, associated with the significant SNP chr4.S_175584318, which encodes a WD40 repeat-like superfamily protein and is highly expressed in maize endosperm, might be a crucial regulator of maize kernel starch synthesis. Out of the 261 inbred lines analyzed, they were categorized into four haplotypes. Remarkably, it was observed that the inbred lines harboring hap4 demonstrated the highest starch content compared to the other haplotypes. Additionally, as a significant achievement, we have developed molecular markers that effectively differentiate maize inbred lines based on their starch content. Overall, our study provides valuable insights into the genetic basis of starch content and the molecular markers can be useful in breeding programs aimed at developing maize varieties with high starch content, thereby improving breeding efficiency. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01437-6.

5.
Plant Cell Rep ; 42(10): 1651-1663, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37498331

RESUMO

KEY MESSAGES: Narrowing down to a single putative target gene behind a leaf senescence mutant and constructing the regulation network by proteomic method. Leaf senescence mutant is an important resource for exploring molecular mechanism of aging. To dig for potential modulation networks during maize leaf aging process, we delimited the gene responsible for a premature leaf senescence mutant els5 to a 1.1 Mb interval in the B73 reference genome using a BC1F1 population with 40,000 plants, and analyzed the leaf proteomics of the mutant and its near-isogenic wild type line. A total of 1355 differentially accumulated proteins (DAP) were mainly enriched in regulation pathways such as "photosynthesis", "ribosome", and "porphyrin and chlorophyll metabolism" by the KEGG pathway analysis. The interaction networks constructed by incorporation of transcriptome data showed that ZmELS5 likely repaired several key factors in the photosynthesis system. The putative candidate proteins for els5 were proposed based on DAPs in the fined QTL mapping interval. These results provide fundamental basis for cloning and functional research of the els5 gene, and new insights into the molecular mechanism of leaf senescence in maize.


Assuntos
Senescência Vegetal , Zea mays , Zea mays/genética , Proteômica/métodos , Transcriptoma , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/genética
6.
Front Genet ; 13: 1004211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437932

RESUMO

Leaf angle (LA) is a key component of maize plant architecture that can simultaneously govern planting density and improve final yield. However, the genetic mechanisms underlying LA have not been fully addressed. To broaden our understanding of its genetic basis, we scored three LA-related traits on upper, middle, and low leaves of 492 maize inbred lines in five environments. Phenotypic data revealed that the three LA-related traits were normally distributed, and significant variation was observed among environments and genotypes. A genome-wide association study (GWAS) was then performed to dissect the genetic factors that control natural variation in maize LA. In total, 85 significant SNPs (involving 32 non-redundant QTLs) were detected (p ≤ 2.04 × 10-6), and individual QTL explained 4.80%-24.09% of the phenotypic variation. Five co-located QTL were detected in at least two environments, and two QTLs were co-located with multiple LA-related traits. Forty-seven meta-QTLs were identified based on meta-analysis combing 294 LA-related QTLs extracted from 18 previously published studies, 816 genes were identified within these meta-QTLs, and seven co-located QTLs were jointly identified by both GWAS and meta-analysis. ZmULA1 was located in one of the co-located QTLs, qLA7, and its haplotypes, hap1 and hap2, differed significantly in LA-related traits. Interestingly, the temperate materials with hap2 had smallest LA. Finally, we also performed haplotype analysis using the reported genes that regulate LA, and identified a lot of maize germplasms that aggregated favorable haplotypes. These results will be helpful for elucidating the genetic basis of LA and breeding new maize varieties with ideal plant architecture.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa