Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biochem Biophys Res Commun ; 667: 1-9, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37201357

RESUMO

Cardiac ischemia/reperfusion(I/R) induced-cardiac vascular endothelial injury is an important pathological process that appears in the early stage of cardiac I/R injury. The autophagy-lysosomal pathway is essential for the maintenance of cellular homeostasis. However, in cardiac I/R injury, the role of the autophagy-lysosomal pathway is controversial. The present study aimed to use oxygen-glucose deprivation/oxygen-glucose resupply(OGD/OGR) in human coronary artery endothelial cells(HCAECs) with I/R injury to assess the role of the autophagy-lysosomal pathway in I/R-induced endothelial injury. The results revealed lysosomal dysfunction and impaired autophagic flux in endothelial cells exposed to OGD/OGR. Meanwhile, our data showed that the levels of cathepsin D(CTSD) decreased time-dependently. Knockdown of CTSD caused lysosomal dysfunction and impaired autophagic flux. Conversely, restoration of CTSD levels protected HCAECs against OGD/OGR induced-defects in autophagy-lysosomal function and cellular damage. Our findings indicated that I/R induced-impaired autophagic flux, rather than excessive autophagic initiation, mediates endothelial cells injury. The maintenance of autophagy-lysosomal function is critical to protect endothelial cells against I/R injury, and CTSD is a key regulator. Thus, strategies focused on restoring CTSD function are potentially novel treatments for cardiac reperfusion injury.


Assuntos
Autofagia , Catepsina D , Lisossomos , Traumatismo por Reperfusão , Humanos , Artérias/citologia , Lisossomos/metabolismo , Traumatismo por Reperfusão/metabolismo , Catepsina D/genética , Catepsina D/metabolismo , Técnicas de Silenciamento de Genes , Células Cultivadas , Oxigênio/metabolismo , Glucose/metabolismo
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(1): 81-86, 2023 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-36585007

RESUMO

OBJECTIVE: To explore the clinical characteristics and genetic etiology of a child with Aicardi-Goutières syndrome 3 (AGS3). METHODS: Trio whole exome sequencing was carried out for the child and his parents, and candidate variants were verified by Sanger sequencing. To further clarify their pathogenicity, the crystal structure of the variants was simulated and analyzed, and the plasmid of variants was expressed in vitro. A literature search was also carried out to summarize the phenotypic and genetic characteristics of AGS3. RESULTS: The child was found to harbor novel compound heterozygous variants of the RNASEH2C gene, namely c.434G>T (p.Arg145Leu) and c.494G>C (p.Ter165Ser), which were inherited from his mother and father, respectively. Analysis of protein crystal structure suggested that the c.434G>T (p.Arg145Leu) variant may affect the stability of local structure, and in vitro experiments showed that this variant can lead to protein degradation. The c.494G>C (p.Ter165Ser) variant has destroyed the stop codon, resulting in prolonged variant. CONCLUSION: The novel compound heterozygous variants of the RNASEH2C gene probably underlay the AGS3 in this child, which has enriched the phenotypic and mutational spectrum of this disorder.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Humanos , Criança , Mutação , Doenças Autoimunes do Sistema Nervoso/genética , Malformações do Sistema Nervoso/genética
3.
J Clin Lab Anal ; 36(2): e24206, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34957600

RESUMO

BACKGROUND: Serum creatinine (SCr) is a useful diagnostic marker for the assessment of renal function. Accurate quantitation of SCr is clinically important in calculation of glomerular filtration rate (GFR). METHOD: To confirm whether there are differences in SCr between enzymatic kits of different manufacturers, the analytical performance of the matched and open test system in the measurement of SCr was evaluated. The analytical performance evaluation was conducted according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Precision, accuracy, linearity, dilution, lower limit of measurement and analytical interference were studied between the two test systems. RESULTS: The performance of SCr from the open test system was in compliance with the matched test system with good precision, accuracy, and linearity. In presence of most common interferents, both test systems could lead to accurate creatinine results except for the existence of specified drugs. For dobutamine, the open test system showed better anti-interference performance than the matched system. CONCLUSION: This study provides referable opinions for clinical laboratory selection on the test system and a framework for future analogous studies based on different test systems.


Assuntos
Creatinina/sangue , Testes de Função Renal/métodos , Humanos , Teste de Materiais
4.
Biochem Biophys Res Commun ; 575: 1-7, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34454174

RESUMO

The pathogenesis of atherosclerosis is closely related to endothelial cell injury caused by lipid peroxidation-induced ferroptosis. Tanshinone IIA (TSA) protects endothelial tissues from damage. In this study, we investigated whether TSA exerts its protective effect on endothelial cells by inhibiting ferroptosis. Ferroptosis was induced in human coronary artery endothelial cells (HCAECs), and cells were treated with TSA. Morphological examination indicated that TSA exerted a significant protective effect on the HCAECs. This was further confirmed by LDH release and cell death detection assays. Flow cytometry revealed that TSA significantly reduced the excessive accumulation of total cellular ROS and lipid ROS caused by ferroptosis inducers. TSA also restored the reduction of glutathione (GSH), a potent and abundant reductant in cells. In addition, we found that TSA promoted the expression of NRF2, an essential player in response to oxidative stress, and its downstream genes. Immunofluorescent staining revealed that TSA promoted the nuclear translocation of NRF2. Increased nuclear translocation of NRF2 was validated by Western blot evaluation of cytoplasmic and nuclear protein extracts. Furthermore, NRF2 inhibition abolished the protective effects of TSA on HCAECs. These data demonstrate that TSA represses ferroptosis via activation of NRF2 in HCAECs.


Assuntos
Abietanos/farmacologia , Aterosclerose/tratamento farmacológico , Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ferroptose , Peroxidação de Lipídeos , Fator 2 Relacionado a NF-E2/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Transdução de Sinais
5.
Toxicol Appl Pharmacol ; 431: 115733, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34599948

RESUMO

The formation of fat-laden foam cells plays an important role in the initiation and progression of atherosclerosis (AS). Amentoflavone (AF) is found in various traditional Chinese medicines, such as ginkgo biloba, which are used to treat cardiovascular diseases (CVDs). We aimed to explore the potential effects and mechanisms of AF on lipid accumulation, and its possible application in atherosclerotic cardiovascular disease (ASCVD). Cellular models of lipid accumulation were established by treatment of HUASMCs and THP-1 cells with oxidized low-density lipoprotein (ox-LDL). Cell viability, lipid accumulation, and ox-LDL uptake were assessed. Small interfering RNAs (siRNAs) and overexpression plasmids were used to reveal the hierarchical correlations of regulatory pathways. AF reduced the lipid accumulation and ox-LDL uptake induced by ox-LDL, and reduced the expression levels of cluster of differentiation 36 (CD36) and peroxisome proliferator-activated receptor gamma (PPARγ) proteins, while the expression level of ATP binding cassette subfamily A member 1 (ABCA1) increased. Knockdown of PPARγ or CD36 with siRNAs prevented ox-LDL-induced lipid accumulation. Overexpression of CD36 or PPARγ promoted the lipid accumulation induced by ox-LDL and eliminated the effect of AF on ox-LDL-induced lipid accumulation. Overall, AF prevents ox-LDL-induced lipid accumulation by suppressing the PPARγ/CD36 signaling pathway.


Assuntos
Aterosclerose/prevenção & controle , Biflavonoides/farmacologia , Antígenos CD36/metabolismo , Células Espumosas/efeitos dos fármacos , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PPAR gama/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Antígenos CD36/genética , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/genética , Placa Aterosclerótica , Transdução de Sinais , Células THP-1
6.
Clin Lab ; 67(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34258963

RESUMO

BACKGROUND: COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which was discovered in 2019 and spread around the world in a short time. SARS-CoV-2 nucleic acid amplification tests (NAATs) have been rapidly developed and quickly applied to clinical testing of COVID-19. Aim of this study was to evaluate the performance of four NAAT assays. METHODS: Limit of detection (LOD), precision, accuracy, analytical specificity and analytical interference studies on four NAATs (Daan, Sansure, Hybribio, and Bioperfectus) were performed according to Clinical Laboratory Standards Institute protocols and guidelines. The four NAATs were compared using 46 clinical samples. RESULTS: The LOD of the N gene for Daan, Sansure, and Hybribio was 500 copies/mL, and that for Bioperfectus was 1,000 copies/mL. The LOD of the ORF1ab gene for Daan, Bioperfectus, and Hybribio was 3,000 copies/mL, and that for Sansure was 2,000 copies/mL. A good precision was shown at the concentration above 20% of the LOD for all four NAATs, with all individual coefficients of variation below 3.6%. Satisfactory results were also observed in the accuracy, analytical specificity, and analytical interference tests. The results of the comparison test showed that Daan, Sansure, and Hybribio NAATs could detect the samples with a specificity of 100% (30/30) and a sensitivity of 100% (16/16), whereas Bioperfectus NAAT detected the samples with a specificity of 100% (30/30) and a sensitivity of 81.25% (13/16). However, no significant difference in sensitivity was found between Bioperfectus NAAT and the three other NAATs (p > 0.05). CONCLUSIONS: The four SARS-CoV-2 NAATs showed comparable performance, with the LOD of the N gene lower than the LOD of the ORF1ab gene.


Assuntos
COVID-19 , Serviços de Laboratório Clínico , Humanos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , Sensibilidade e Especificidade
7.
J Med Internet Res ; 23(2): e23390, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33534722

RESUMO

BACKGROUND: The initial symptoms of patients with COVID-19 are very much like those of patients with community-acquired pneumonia (CAP); it is difficult to distinguish COVID-19 from CAP with clinical symptoms and imaging examination. OBJECTIVE: The objective of our study was to construct an effective model for the early identification of COVID-19 that would also distinguish it from CAP. METHODS: The clinical laboratory indicators (CLIs) of 61 COVID-19 patients and 60 CAP patients were analyzed retrospectively. Random combinations of various CLIs (ie, CLI combinations) were utilized to establish COVID-19 versus CAP classifiers with machine learning algorithms, including random forest classifier (RFC), logistic regression classifier, and gradient boosting classifier (GBC). The performance of the classifiers was assessed by calculating the area under the receiver operating characteristic curve (AUROC) and recall rate in COVID-19 prediction using the test data set. RESULTS: The classifiers that were constructed with three algorithms from 43 CLI combinations showed high performance (recall rate >0.9 and AUROC >0.85) in COVID-19 prediction for the test data set. Among the high-performance classifiers, several CLIs showed a high usage rate; these included procalcitonin (PCT), mean corpuscular hemoglobin concentration (MCHC), uric acid, albumin, albumin to globulin ratio (AGR), neutrophil count, red blood cell (RBC) count, monocyte count, basophil count, and white blood cell (WBC) count. They also had high feature importance except for basophil count. The feature combination (FC) of PCT, AGR, uric acid, WBC count, neutrophil count, basophil count, RBC count, and MCHC was the representative one among the nine FCs used to construct the classifiers with an AUROC equal to 1.0 when using the RFC or GBC algorithms. Replacing any CLI in these FCs would lead to a significant reduction in the performance of the classifiers that were built with them. CONCLUSIONS: The classifiers constructed with only a few specific CLIs could efficiently distinguish COVID-19 from CAP, which could help clinicians perform early isolation and centralized management of COVID-19 patients.


Assuntos
COVID-19/diagnóstico , Infecções Comunitárias Adquiridas/diagnóstico , Aprendizado de Máquina , Pneumonia/diagnóstico , SARS-CoV-2/patogenicidade , Área Sob a Curva , COVID-19/sangue , COVID-19/virologia , Infecções Comunitárias Adquiridas/sangue , Feminino , Humanos , Laboratórios , Contagem de Leucócitos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Pneumonia/sangue , Pró-Calcitonina/sangue , Curva ROC , Estudos Retrospectivos
8.
BMC Mol Biol ; 20(1): 8, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885136

RESUMO

BACKGROUND: Myocyte enhancer factor 2A (MEF2A) plays an important role in cell proliferation, differentiation and survival. Functional deletion or mutation in MEF2A predisposes individuals to cardiovascular disease mainly caused by vascular endothelial dysfunction. However, the effect of the inhibition of MEF2A expression on human coronary artery endothelial cells (HCAECs) is unclear. In this study, expression of MEF2A was inhibited by specific small interference RNA (siRNA), and changes in mRNA profiles in response to MEF2A knockdown were analyzed using an Agilent human mRNA array. RESULTS: Silencing of MEF2A in HCAECs accelerated cell senescence and suppressed cell proliferation. Microarray analysis identified 962 differentially expressed genes (DEGs) between the MEF2A knockdown group and the negative control group. Annotation clustering analysis showed that the DEGs were preferentially enriched in gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to proliferation, development, survival, and inflammation. Furthermore, 61 of the 578 downregulated DEGs have at least one potential MEF2A binding site in the proximal promoter and were mostly enriched in the GO terms "reproduction" and "cardiovascular." The protein-protein interaction network analyzed for the downregulated DEGs and the DEGs in the GO terms "cardiovascular" and "aging" revealed that PIK3CG, IL1B, IL8, and PRKCB were included in hot nodes, and the regulation of the longevity-associated gene PIK3CG by MEF2A has been verified at the protein level, suggesting that PIK3CG might play a key role in MEF2A knockdown induced HCAEC senescence. CONCLUSIONS: MEF2A knockdown accelerates HCAEC senescence, and the underlying molecular mechanism may be involved in down-regulation of the genes related with cell proliferation, development, inflammation and survival, in which PIK3CG may play a key role.


Assuntos
Senescência Celular/genética , Vasos Coronários/citologia , Células Endoteliais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/fisiologia
9.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(11): 1089-1093, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31753090

RESUMO

OBJECTIVE: To study the application value of surface electromyography in children with dysphagia. METHODS: A total of 20 children with dysphagia were enrolled as the observation group, and 20 healthy children, matched for sex and age, were enrolled as the control group. Surface electromyography was used to record the electromyography integral values of the submental and infrahyoid muscle groups in the resting state and the state after water swallowing. The two groups were compared in terms of the electromyography integral values of the submental and infrahyoid muscle groups in the resting state and the state after swallowing 5 mL water. The observation group was observed in terms of the changes in the electromyography integral values of the submental and infrahyoid muscle groups after 1 month of rehabilitation treatment. A Spearman correlation analysis was used to evaluate the correlation of the degree of dysphagia with the electromyography integral values of the submental and infrahyoid muscle groups in the observation group. RESULTS: There was no significant difference between the two groups in the electromyography integral values of the submental and infrahyoid muscle groups in the resting state (P>0.05), while after water swallowing, the observation group had significantly higher electromyography integral values than the control group (P<0.05). The observation group had significant improvements in the clinical symptoms of dysphagia after treatment, with significant reductions in the electromyography integral values of the submental and infrahyoid muscle groups (P<0.05). The severity of dysphagia was positively correlated with the electromyography integral values of the submental and infrahyoid muscle groups (P<0.01). CONCLUSIONS: Surface electromyography is useful in the diagnosis and therapeutic effect evaluation for dysphagia in children.


Assuntos
Transtornos de Deglutição , Criança , Deglutição , Eletromiografia , Humanos
10.
Lancet Oncol ; 16(7): 804-15, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26088272

RESUMO

BACKGROUND: The ability of circulating microRNAs (miRNAs) to detect preclinical hepatocellular carcinoma has not yet been reported. We aimed to identify and assess a serum miRNA combination that could detect the presence of clinical and preclinical hepatocellular carcinoma in at-risk patients. METHODS: We did a three-stage study that included healthy controls, inactive HBsAg carriers, individuals with chronic hepatitis B, individuals with hepatitis B-induced liver cirrhosis, and patients with diagnosed hepatocellular carcinoma from four hospitals in China. We used array analysis and quantitative PCR to identify 19 candidate serum miRNAs that were increased in six patients with hepatocellular carcinoma compared with eight control patients with chronic hepatitis B. Using a training cohort of patients with hepatocellular carcinoma and controls, we built a serum miRNA classifier to detect hepatocellular carcinoma. We then validated the classifiers' ability in two independent cohorts of patients and controls. We also established the classifiers' ability to predict preclinical hepatocellular carcinoma in a nested case-control study with sera prospectively collected from patients with hepatocellular carcinoma before clinical diagnosis and from matched individuals with hepatitis B who did not develop cancer from the same surveillance programme. We used the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) to evaluate diagnostic performance, and compared the miRNA classifier with α-fetoprotein at a cutoff of 20 ng/mL (AFP20). FINDINGS: Between Aug 1, 2009, and Aug 31, 2013, we recruited 257 participants to the training cohort, and 352 and 139 participants to the two independent validation cohorts. In the third validation cohort, 27 patients with hepatocellular carcinoma and 135 matched controls were included in the nested case-control study, which ran from Aug 1, 2009, to Aug 31, 2014. We identified a miRNA classifier (Cmi) containing seven differentially expressed miRNAs (miR-29a, miR-29c, miR-133a, miR-143, miR-145, miR-192, and miR-505) that could detect hepatocellular carcinoma. Cmi showed higher accuracy than AFP20 to distinguish individuals with hepatocellular carcinoma from controls in the validation cohorts, but not in the training cohort (AUC 0·826 [95% CI 0·771-0·880] vs 0·814 [0·756-0·872], p=0·72 in the training cohort; 0·817 [0·769-0·865] vs 0·709 [0·653-0·765], p=0·00076 in validation cohort 1; and 0·884 [0·818-0·951] vs 0·796 [0·706-0·886], p=0·042 for validation cohort 2). In all four cohorts, Cmi had higher sensitivity (range 70·4-85·7%) than did AFP20 (40·7-69·4%) to detect hepatocellular carcinoma at the time of diagnosis, whereas its specificity (80·0-91·1%) was similar to that of AFP20 (84·9-100%). In the nested case-control study, sensitivity of Cmi to detect hepatocellular carcinoma was 29·6% (eight of 27 cases) 12 months before clinical diagnosis, 48·1% (n=13) 9 months before clinical diagnosis, 48·1% (n=13) 6 months before clinical diagnosis, and 55·6% (n=15) 3 months before clinical diagnosis, whereas sensitivity of AFP20 was only 7·4% (n=2), 11·1% (n=3), 18·5% (n=5), and 22·2% (n=6) at the corresponding timepoints (p=0·036, p=0·0030, p=0·021, p=0·012, respectively). Cmi had a larger AUC than did AFP20 to identify small-size (AUC 0·833 [0·782-0·883] vs 0·727 [0·664-0·792], p=0·0018) and early-stage (AUC 0·824 [0·781-0·868] vs 0·754 [0·702-0·806], p=0·015) hepatocellular carcinoma and could also detect α-fetoprotein-negative (AUC 0·825 [0·779-0·871]) hepatocellular carcinoma. INTERPRETATION: Cmi is a potential biomarker for hepatocellular carcinoma, and can identify small-size, early-stage, and α-fetoprotein-negative hepatocellular carcinoma in patients at risk. The miRNA classifier could be valuable to detect preclinical hepatocellular carcinoma, providing patients with a chance of curative resection and longer survival. FUNDING: National Key Basic Research Program, National Science and Technology Major Project, National Natural Science Foundation of China.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Detecção Precoce de Câncer/métodos , Neoplasias Hepáticas/sangue , MicroRNAs/sangue , Adulto , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , China , Feminino , Hepatite B Crônica/sangue , Hepatite B Crônica/patologia , Humanos , Neoplasias Hepáticas/patologia , Estudos Longitudinais , Masculino , MicroRNAs/classificação , Pessoa de Meia-Idade , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , alfa-Fetoproteínas/análise
11.
Heliyon ; 10(5): e26960, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444486

RESUMO

Background: Although many circulating miRNAs (c-miRNAs) are associated with coronary artery disease (CAD), they are far from being the biomarker for CAD diagnosis or risk prediction. Therefore, novel c-miRNAs discovery and validation are still required, especially evaluating their prediction capacity. Objectives: Identify novel CAD-related c-miRNAs and evaluate its risk prediction capacity for CAD. Methods: miRNAs associated with CAD were preliminarily investigated in three paired samples representing pre-CAD stage and CAD stage of three female individuals using the Applied Biosystems miRNA TaqMan® Low-Density Array (TLDA). Then, the candidate miRNAs were further verified in an independent case-control study including 129 CAD patients and 76 controls, and their potential practical value in prediction for CAD was evaluated using a machine learning (ML) algorithm. The accuracy of classification and prediction was assessed with the area under the receiver operating characteristic curve (AUC). Results: TLDA analysis shows that miR-140-3p decreased significantly in CAD-stage (FC = -3.01, P = 0.007). Further study shows that miR-140-3p was significantly lower in CAD group [1.26 (0.68, 2.01)] than in control group [2.07 (1.19, 3.21)] (P < 0.001) and independently associated with CAD (P < 0.001). The addition of miR-140-3p to the variables including smoking history, HDL-c, and APOA1 improved the accuracy of classification by logistic regression and of prediction for CAD by ML models. The ML models built with miR-140-3p and HDL-c, respectively, had a similar prediction accuracy. The feature importance of miR-140-3p and HDL-c in the ML models was also similar. Decision curve analysis showed that miR-140-3p and HDL-c had almost identical net benefits. Conclusion: Reduced levels of miR-140-3p is linked to CAD, and it is possible to use the plasma level of miR-140-3p as a means of evaluating the risk of CAD.

12.
Aging Dis ; 14(2): 331-349, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37008050

RESUMO

Cell regulatory networks are the determinants of cellular homeostasis. Any alteration to these networks results in the disturbance of cellular homeostasis and induces cells towards different fates. Myocyte enhancer factor 2A (MEF2A) is one of four members of the MEF2 family of transcription factors (MEF2A-D). MEF2A is highly expressed in all tissues and is involved in many cell regulatory networks including growth, differentiation, survival and death. It is also necessary for heart development, myogenesis, neuronal development and differentiation. In addition, many other important functions of MEF2A have been reported. Recent studies have shown that MEF2A can regulate different, and sometimes even mutually exclusive cellular events. How MEF2A regulates opposing cellular life processes is an interesting topic and worthy of further exploration. Here, we reviewed almost all MEF2A research papers published in English and summarized them into three main sections: 1) the association of genetic variants in MEF2A with cardiovascular disease, 2) the physiopathological functions of MEF2A, and 3) the regulation of MEF2A activity and its regulatory targets. In summary, multiple regulatory patterns for MEF2A activity and a variety of co-factors cause its transcriptional activity to switch to different target genes, thereby regulating opposing cell life processes. The association of MEF2A with numerous signaling molecules establishes a central role for MEF2A in the regulatory network of cellular physiopathology.

13.
Front Biosci (Landmark Ed) ; 27(7): 211, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35866398

RESUMO

BACKGROUND: Premature coronary artery disease (PCAD) has a poor prognosis and a high mortality and disability rate. Accurate prediction of the risk of PCAD is very important for the prevention and early diagnosis of this disease. Machine learning (ML) has been proven a reliable method used for disease diagnosis and for building risk prediction models based on complex factors. The aim of the present study was to develop an accurate prediction model of PCAD risk that allows early intervention. METHODS: We performed retrospective analysis of single nucleotide polymorphisms (SNPs) and traditional cardiovascular risk factors (TCRFs) for 131 PCAD patients and 187 controls. The data was used to construct classifiers for the prediction of PCAD risk with the machine learning (ML) algorithms LogisticRegression (LRC), RandomForestClassifier (RFC) and GradientBoostingClassifier (GBC) in scikit-learn. Three quarters of the participants were randomly grouped into a training dataset and the rest into a test dataset. The performance of classifiers was evaluated using area under the receiver operating characteristic curve (AUC), sensitivity and concordance index. R packages were used to construct nomograms. RESULTS: Three optimized feature combinations (FCs) were identified: RS-DT-FC1 (rs2259816, rs1378577, rs10757274, rs4961, smoking, hyperlipidemia, glucose, triglycerides), RS-DT-FC2 (rs1378577, rs10757274, smoking, diabetes, hyperlipidemia, glucose, triglycerides) and RS-DT-FC3 (rs1169313, rs5082, rs9340799, rs10757274, rs1152002, smoking, hyperlipidemia, high-density lipoprotein cholesterol). These were able to build the classifiers with an AUC >0.90 and sensitivity >0.90. The nomograms built with RS-DT-FC1, RS-DT-FC2 and RS-DT-FC3 had a concordance index of 0.94, 0.94 and 0.90, respectively, when validated with the test dataset, and 0.79, 0.82 and 0.79 when validated with the training dataset. Manual prediction of the test data with the three nomograms resulted in an AUC of 0.89, 0.92 and 0.83, respectively, and a sensitivity of 0.92, 0.96 and 0.86, respectively. CONCLUSIONS: The selection of suitable features determines the performance of ML models. RS-DT-FC2 may be a suitable FC for building a high-performance prediction model of PCAD with good sensitivity and accuracy. The nomograms allow practical scoring and interpretation of each predictor and may be useful for clinicians in determining the risk of PCAD.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Hiperlipidemias , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Glucose , Fatores de Risco de Doenças Cardíacas , Humanos , Aprendizado de Máquina , Estudos Retrospectivos , Fatores de Risco , Triglicerídeos
14.
Hepatology ; 51(3): 836-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20041405

RESUMO

UNLABELLED: Based on microarray data, we have previously shown a significant down-regulation of miR-29 in hepatocellular carcinoma (HCC) tissues. To date, the role of miR-29 deregulation in hepatocarcinogenesis and the signaling pathways by which miR-29 exerts its function and modulates the malignant phenotypes of HCC cells remain largely unknown. In this study, we confirmed that reduced expression of miR-29 was a frequent event in HCC tissues using both Northern blot and real-time quantitative reverse-transcription polymerase chain reaction. More interestingly, we found that miR-29 down-regulation was significantly associated with worse disease-free survival of HCC patients. Both gain- and loss-of-function studies revealed that miR-29 could sensitize HCC cells to apoptosis that was triggered by either serum starvation and hypoxia or chemotherapeutic drugs, which mimicked the tumor growth environment in vivo and the clinical treatment. Moreover, introduction of miR-29 dramatically repressed the ability of HCC cells to form tumor in nude mice. Subsequent investigation characterized two antiapoptotic molecules, Bcl-2 and Mcl-1, as direct targets of miR-29. Furthermore, silencing of Bcl-2 and Mcl-1 phenocopied the proapoptotic effect of miR-29, whereas overexpression of these proteins attenuated the effect of miR-29. In addition, enhanced expression of miR-29 resulted in the loss of mitochondrial potential and the release of cytochrome c to cytoplasm, suggesting that miR-29 may promote apoptosis through a mitochondrial pathway that involves Mcl-1 and Bcl-2. CONCLUSION: Our data highlight an important role of miR-29 in the regulation of apoptosis and in the molecular etiology of HCC, and implicate the potential application of miR-29 in prognosis prediction and in cancer therapy.


Assuntos
Apoptose/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/fisiologia , Animais , Células Cultivadas , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade
15.
Ann Lab Med ; 41(1): 51-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829579

RESUMO

BACKGROUND: A small shift in high-sensitivity cardiac troponin T (hs-cTnT) assays can lead to different result interpretation and consequent patient management. We explored whether a small bias could be detected using conventional internal quality control (QC) procedures, evaluated the performance of moving average (MA)-based QC procedures, and proposed a new QC procedure based on the moving rate (MR) of positive patient results of hs-cTnT assays. METHODS: The ability of conventional QC to detect a 5 ng/L bias was examined using the13s/ 22s/R4s multi-rule procedure as deviation rules.We developed MA and MR procedures for the hs-cTnT assay using eight months of patient data. The performance of different MA or MR procedures was investigated by calculating the median number of patient samples affected until a bias introduced into the dataset was detected (MNPed). After comparing the MNPed across different procedures, we selected an optimal MA or MR procedure for validation. Validation graphs were plotted using the minimum, median, and maximum number of results affected until bias detection. RESULTS: Our conventional QC procedures could not detect a positive bias of 5 ng/L. When a positive bias was introduced, MNPed was much higher using MA than using MR, with cut-off values of 5 ng/L and 14 ng/L, respectively. MR validation charts for optimal procedures provided insight into the MR performance. CONCLUSIONS: The MR procedure could detect different errors with few false alarms. In the hs-cTnT assay, the MR procedure with a smaller cut-off value outperformed MA and conventional QC procedures for small bias detection.


Assuntos
Troponina T/sangue , Algoritmos , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Imunoensaio/normas , Medições Luminescentes , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico , Controle de Qualidade , Estudos Retrospectivos , Troponina T/normas
16.
Front Cardiovasc Med ; 8: 775392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047575

RESUMO

Both resveratrol and myocyte enhancer factor 2A (MEF2A) may protect vascular endothelial cell (VEC) through activating the expression of SIRT1. However, the relationship between resveratrol and MEF2A is unclear. We aimed to investigate the deeper mechanism of resveratrol in protecting vascular endothelial cells and whether MEF2A plays a key role in the protective function of resveratrol. Human umbilical vein endothelial cell (HUVEC) was used for in vitro study, and small interfere RNA was used for silencing MEF2A. Silencing MEF2A in the vascular endothelium (VE) of ApoE-/- mice was performed by tail injection with adeno associated virus expressing si-mef2a-shRNA. The results showed that treatment of HUVEC with resveratrol significantly up-regulated MEF2A, and prevented H2O2-induced but not siRNA-induced down-regulation of MEF2A. Under various experimental conditions, the expression of SIRT1 changed with the level of MEF2A. Resveratrol could rescue from cell apoptosis, reduction of cell proliferation and viability induced by H2O2, but could not prevent against that caused by silencing MEF2A with siRNA. Silencing MEF2A in VE of apoE-/- mice decreased the expression of SIRT1, increased the plasma LDL-c, and abrogated the function of resveratrol on reducing triglyceride. Impaired integrity of VE and aggravated atherosclerotic lesion were observed in MEF2A silenced mice through immunofluorescence and oil red O staining, respectively. In conclusion, resveratrol enhances MEF2A expression, and the upregulation of MEF2A is required for the endothelial protective benefits of resveratrol in vitro via activating SIRT1. Our work has also explored the in vivo relevance of this signaling pathway in experimental models of atherosclerosis and lipid dysregulation, setting the stage for more comprehensive phenotyping in vivo and further defining the molecular mechanisms.

17.
Diagn Microbiol Infect Dis ; 99(2): 115169, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33202303

RESUMO

We evaluated simple laboratory variables to discriminate COVID-19 from bacterial pneumonia or influenza and for the prospective grading of COVID-19. Multivariate logistic regression and receiver operating characteristic curve were used to estimate the diagnostic performance of the significant discriminating variables. A comparative analysis was performed with different severity. The leukocytosis (P = 0.017) and eosinopenia (P = 0.001) were discriminating variables between COVID-19 and bacterial pneumonia with area under the curve (AUC) of 0.778 and 0.825. Monocytosis (P = 0.003), the decreased lymphocyte-to-monocyte ratio (P < 0.001), and the increased neutrophil-to-lymphocyte ratio (NLR) (P = 0.028) were predictive of influenza with AUC of 0.723, 0.895, and 0.783, respectively. Serum amyloid protein, lactate dehydrogenase, CD3+ cells, and the fibrinogen degradation products had a good correlation with the severity of COVID-19 graded by age (≥50) and NLR (≥3.13). Simple laboratory variables are helpful for rapid diagnosis on admission and hierarchical management of COVID-19 patients.


Assuntos
COVID-19/diagnóstico , Influenza Humana/diagnóstico , Pneumonia Bacteriana/diagnóstico , Índice de Gravidade de Doença , Adolescente , Adulto , Proteínas Amiloidogênicas/sangue , Criança , Pré-Escolar , Diagnóstico Diferencial , Eosinofilia/patologia , Feminino , Fibrinogênio/metabolismo , Humanos , L-Lactato Desidrogenase/sangue , Leucocitose/patologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Monócitos/citologia , Neutrófilos/citologia , Estudos Retrospectivos , SARS-CoV-2 , Adulto Jovem
18.
Eur J Pharmacol ; 898: 173975, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33647258

RESUMO

Natural products are a large source of clinically effective antitumor drugs. Millepachine, a natural product derived from leguminous plants, was reported to display antitumor activity. In this study, the novel compound, (1H-indol-5-yl) (5-methoxy-2,2-dimethyl-2H-chromen-8-yl)methanone (MIL-1), was designed and synthesized by fusing millepachine and indole rings. MIL-1 exerted much better antitumor activity than millepachine, manifesting as a 24- to 201-fold increase in vitro cytotoxicity and a 2.4-fold increase in in vivo antitumor activity in hepatocellular cell lines-derived models. The immunofluorescence and HPLC detection revealed that MIL-1 was a potent microtubule targeting agent by interfering with the equilibrium of tubulin-microtubule dynamics and irreversibly binding to tubulin. MIL-1 displayed remarkable antitumor activity with an IC50 of 31-207 nM towards various human cancer cell lines derived from various organs and tissues, and it exerted no evidence of toxicity against normal cells. Mechanistic studies showed that MIL-1 arrested the cell cycle at G2/M phase and induced apoptosis by activating caspase-3 activity and reactive oxygen species (ROS) accumulation. Moreover, the superior antitumor effect of MIL-1 is worthy of further detailed study for the treatment of hepatocellular carcinoma (HCC).


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Chalconas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Microtúbulos/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos Fitogênicos/síntese química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Microtúbulos/metabolismo , Microtúbulos/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Moduladores de Tubulina/síntese química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Hepatology ; 50(1): 113-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19441017

RESUMO

UNLABELLED: Growing evidence indicates that deregulation of microRNAs (miRNAs) contributes to tumorigenesis. Down-regulation of miR-195 has been observed in various types of cancers. However, the biological function of miR-195 is still largely unknown. In this study we aimed to elucidate the pathophysiologic role of miR-195. Our results showed that miR-195 expression was significantly reduced in as high as 85.7% of hepatocellular carcinoma (HCC) tissues and in all of the five HCC cell lines examined. Moreover, introduction of miR-195 dramatically suppressed the ability of HCC and colorectal carcinoma cells to form colonies in vitro and to develop tumors in nude mice. Furthermore, ectopic expression of miR-195 blocked G(1)/S transition, whereas inhibition of miR-195 promoted cell cycle progression. Subsequent investigation characterized multiple G(1)/S transition-related molecules, including cyclin D1, CDK6, and E2F3, as direct targets of miR-195. Silencing of cyclin D1, CDK6, or E2F3 phenocopied the effect of miR-195, whereas overexpression of these proteins attenuated miR-195-induced G(1) arrest. In addition, miR-195 significantly repressed the phosphorylation of Rb as well as the transactivation of downstream target genes of E2F. These results imply that miR-195 may block the G(1)/S transition by repressing Rb-E2F signaling through targeting multiple molecules, including cyclin D1, CDK6, and E2F3. CONCLUSION: Our data highlight an important role of miR-195 in cell cycle control and in the molecular etiology of HCC, and implicate the potential application of miR-195 in cancer therapy.


Assuntos
Carcinoma Hepatocelular/genética , Interfase , Neoplasias Hepáticas/genética , MicroRNAs/fisiologia , Genes Supressores de Tumor , Humanos , Células Tumorais Cultivadas
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 12(4): 290-2, 2010 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-20416224

RESUMO

OBJECTIVE: To study the effect of astragaloside IV on the expression of cytokines in bone mesenchymal stem cells (MSCs) in rats. METHODS: MSCs were isolated from Wistar rats by the method of adhesive cultiration and clone, and then their biological activities were assessed using indirect immunofluorescence. Proliferation of MSCs stimulated with astragaloside IV was ascertained by the MTT method. Expression of cytokines was ascertained using RT-PCR in MSCs with astragaloside IV stimulation or not. RESULTS: MSCs were effectively isolated and purified in vitro, and had expression of many cytokines except IL-3, such as stem cell factor (SCF), thrombopoietin (TPO), granulocyte macrophage colony stimulating factor (GM-CSF) and transforming growth factor (TGF-beta1). Astragaloside IV stimulation promoted MSCs proliferation, and 200 mg/mL astragaloside IV treatment produced a peak effect 72 hrs after culture. The SCF expression in MSCs stimulated with astragaloside IV increased significantly compared with that in MSCs without astragaloside IV stimulation. CONCLUSIONS: Astragaloside IV may promote MSCs proliferation and increase SCF secretion in vitro.


Assuntos
Células-Tronco Mesenquimais/efeitos dos fármacos , Saponinas/farmacologia , Fator de Células-Tronco/biossíntese , Triterpenos/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Wistar , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa