Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(23): 38699-38714, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017968

RESUMO

Noble metal and semiconductor composite substrates possess high sensitivity, excellent stability, good biocompatibility, and selective enhancement, making them an important research direction in the field of surface-enhanced Raman scattering (SERS). Ta2O5, as a semiconductor material with high thermal stability, corrosion resistance, outstanding optical properties, and catalytic performance, has great potential in SERS research. This study aims to design and fabricate a composite SERS substrate based on Ta2O5 nanostructures, achieving optimal detection performance by combining the urchin-like structure of Ta2O5 with silver nanoparticles (Ag NPs). The urchin-like Ta2O5 nanostructures were prepared using a hydrothermal reaction method. The bandgap was modulated through structure design and the self-doping technique, the charge transfer efficiency and surface plasmon resonance effects were improved, thereby achieving better SERS performance. The composite substrate enables highly sensitive quantitative detection. This composite SERS substrate combines the electromagnetic enhancement mechanism (EM) and chemical enhancement mechanism (CM), achieving ultra-low detection limits of 10-13 M for R6G. Within the concentration range above 10-12 M, there is a good linear relationship between concentration and peak intensity, demonstrating excellent quantitative analysis capabilities. Furthermore, this composite SERS substrate is capable of precise detection of analytes such as crystal violet (CV) and methylene blue (MB), holding broad application prospects in areas such as food safety and environmental monitoring.

2.
Opt Express ; 29(21): 34552-34564, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809242

RESUMO

The composite substrate composed of precious metal, semiconductor and graphene has not only high sensitivity and uniform Raman signal but also stable chemical properties, which is one of the important topics in the field of surface-enhanced Raman scattering (SERS). In this paper, a sandwich SERS substrate based on tantalum oxide (Ta2O5) is designed and fabricated. The substrate has high sensitivity, stable performance and high quantification capability. The composite substrate can achieve a high sensitivity Raman detection of crystal violet (CV) with a detection limit of 10-11 M and an enhancement factor of 1.5 × 109. This is the result of the synergistic effect of electromagnetic enhancement and chemical enhancement, in which the chemical enhancement is the cooperative charge transfer in the system composed of probe molecules, silver nanoparticles (AgNPs) and Ta2O5, and the electromagnetic enhancement comes from the strong local surface plasmon resonance between the adjacent AgNPs. After exposing the composite substrate to the air for one month, the Raman signal did not weaken, indicating that the performance of the composite substrate is stable. In addition, there is an excellent linear relationship between the intensity of Raman characteristic peak and the concentration of probe molecules, which proves that the composite substrate has high quantification capability. In practical application, the composite SERS substrate can be used to detect harmful malachite green quickly and sensitively and has a broad application prospect in the field of food safety and chemical analysis.

3.
Opt Express ; 28(20): 29357-29367, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114837

RESUMO

The simultaneous output of highly sensitive and reproducible signals for surface-enhanced Raman spectroscopy (SERS) technology remains difficult. Here, we propose a two-dimensional (2D) composite structure using the repeated annealing method with MoS2 film as the molecular adsorbent. This method provides enlarged Au nanoparticle (NP) density with much smaller gap spacing, and thus dramatically increases the density and intensity of hot spots. The MoS2 films distribute among the hot spots, which is beneficial for uniform molecular adsorption, and further increases the sensitivity of the SERS substrate. Three kinds of molecules were used to evaluate the SERS substrate. Ultra-sensitive, highly repetitive, and stable SERS signals were obtained, which would promote the application process of SERS technology in quantitative analysis and detection.

4.
Opt Express ; 26(17): 21546-21557, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130861

RESUMO

It is very vital to construct the dense hot spots for the strong surface-enhanced Raman scattering (SERS) signals. We take full advantage of the MoS2 edge-active sites induced from annealing the Ag film on the surface of the MoS2. Furthermore, the composite structure of Au-Ag bi-metal nanoparticles (NPs)/MoS2 hybrid with pyramid structure is obtained by the in situ grown AuNPs around AgNPs, which serves the optimal SERS performance (enhancement factor is ~9.67 × 109) in experiment. Due to the introduction of AuNPs with the simple method, the denser hot spots contribute greatly to the stronger local electric field, which is also confirmed by the finite-different time-domain (FDTD) simulation. Therefore, the ultralow limit of detection (the LOD of 10-13 and 10-12 M respectively for the resonant R6G and non-resonant CV), quantitative detection and excellent reproducibility are achieved by the proposed SERS substrate. For practical application, the melamine molecule is detected with the LOD of 10-10 M using the proposed SERS substrate that has the potential to be a food security sensor.

5.
Opt Express ; 26(17): 21784-21796, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130880

RESUMO

Various flexible SERS sensors have attracted widespread concern in performing the direct identification of the analytes adsorbed on arbitrary surfaces. Here, a sample method was proposed to integrate plasmonic nanoparticles into polydimethylsiloxane (PDMS) to fabricate flexible substrate for the decoration of silver nanoparticles (AgNPs). The flexible SERS sensor based on AgNPs/AgNPs-PDMS offers highly sensitive Raman detection with enhancement factor up to 8.3 × 109, which can be attributed to the integrative effects from both the increase of the light absorption of the embedded AgNPs in PDMS substrate and the EM enhancement from the adjacent top-top, bottom-bottom and top-bottom AgNPs. After undergoing the cyclic mechanical deformation, the SERS substrate still maintains high mechanical stability and stable SERS signals. However, upon stretching the flexible substrate, there was an amusing phenomenon that SERS signals can be highly increased, which results from that the reduction of lateral nanogaps between top and bottom of the PDMS boundary strengthens the trigger of the plasmon coupling as demonstrated by the simulated result. This result reveals that the tuning and the coupling of the electromagnetic fields can be effectively controlled by the macroscopic mechanical solicitation. That will have an important significance for practical applications in strain-dependent sensors and detectors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa