Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Evolution ; 77(4): 1145-1157, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801936

RESUMO

Frequency-dependent selection (FDS) is an evolutionary regime that can maintain or reduce polymorphisms. Despite the increasing availability of polymorphism data, few effective methods are available for estimating the gradient of FDS from the observed fitness components. We modeled the effects of genotype similarity on individual fitness to develop a selection gradient analysis of FDS. This modeling enabled us to estimate FDS by regressing fitness components on the genotype similarity among individuals. We detected known negative FDS on the visible polymorphism in a wild Arabidopsis and damselfly by applying this analysis to single-locus data. Further, we simulated genome-wide polymorphisms and fitness components to modify the single-locus analysis as a genome-wide association study (GWAS). The simulation showed that negative or positive FDS could be distinguished through the estimated effects of genotype similarity on simulated fitness. Moreover, we conducted the GWAS of the reproductive branch number in Arabidopsis thaliana and found that negative FDS was enriched among the top-associated polymorphisms of FDS. These results showed the potential applicability of the proposed method for FDS on both visible polymorphism and genome-wide polymorphisms. Overall, our study provides an effective method for selection gradient analysis to understand the maintenance or loss of polymorphism.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo Genético , Humanos , Genótipo , Genoma , Evolução Biológica , Polimorfismo de Nucleotídeo Único
2.
R Soc Open Sci ; 10(8): 230399, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37621664

RESUMO

Plant life-history traits, such as size and flowering, contribute to shaping variation in herbivore abundance. Although plant genes involved in physical and chemical traits have been well studied, less is known about the loci linking plant life-history traits and herbivore abundance. Here, we conducted a genome-wide association study (GWAS) of aphid abundance in a field population of Arabidopsis thaliana. This GWAS of aphid abundance detected a relatively rare but significant variant on the third chromosome of A. thaliana, which was also suggestively but non-significantly associated with the presence or absence of inflorescence. Out of candidate genes near this significant variant, a mutant of a ribosomal gene (AT3G13882) exhibited slower growth and later flowering than a wild type under laboratory conditions. A no-choice assay with the turnip aphid, Lipaphis erysimi, found that aphids were unable to successfully establish on the mutant. Our GWAS of aphid abundance unexpectedly found a locus affecting plant growth and flowering.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa