RESUMO
Vitamin C (VC) plays an essential role in fish physiological function and normal growth. However, its effects and requirement of coho salmon Oncorhynchus kisutch (Walbaum, 1792) are still unknown. Based on the influences on growth, serum biochemical parameters, and antioxidative ability, an assessment of dietary VC requirement for coho salmon postsmolts (183.19 ± 1.91 g) was conducted with a ten-week feeding trial. Seven isonitrogenous (45.66% protein) and isolipidic (10.76% lipid) diets were formulated to include graded VC concentrations of 1.8, 10.9, 50.8, 100.5, 197.3, 293.8, and 586.7 mg/kg, respectively. Results showed that VC markedly improved the growth performance indexes and liver VC concentration, enhanced the hepatic and serum antioxidant activities, and increased the contents of serum alkaline phosphatase (AKP) activity, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total cholesterol (TC) whereas decreased the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities, and triglyceride (TG) level. Polynomial analysis showed that the optimal VC levels in the diet of coho salmon postsmolts were 188.10, 190.68, 224.68, 132.83, 156.57, 170.12, 171.00, 185.50, 142.77, and 93.08 mg/kg on the basis of specific growth rate (SGR), feed conversion ratio (FCR), liver VC concentration, catalase (CAT), hepatic superoxide dismutase (SOD) activities, malondialdehyde (MDA) content, and serum total antioxidative capacity (T-AOC), AKP, AST, and ALT activities, respectively. The dietary VC requirement was in the range of 93.08-224.68 mg/kg for optimum growth performance, serum enzyme activities, and antioxidant capacity of coho salmon postsmolts.
RESUMO
The transposon silencer piwi genes play important roles in germline determination and maintenance, gametogenesis, and stem-cell self-renewal, and the expression of certain piwi genes is indispensable for regeneration. Knowledge about piwi genes is needed for phylum Nemertea, which contains members (e.g., Lineus sanguineus) with formidable regeneration capacity. By searching the L. sanguineus genome, we identified six Argonaute genes including three ago (Ls-Ago2, Ls-Ago2a, and Ls-Ago2b) and three piwi (Ls-piwi1, Ls-piwi2, and Ls-piwi3) genes. In situ hybridization revealed that, in intact females, Ls-piwi2 and Ls-piwi3 were not expressed, while Ls-piwi1 was expressed in ovaries. During regeneration, Ls-piwi1 and Ls-pcna (proliferating cell nuclear antigen) had strong and similar expressions. The expression of Ls-piwi1 became indetectable while Ls-pcna continued to be expressed when the differentiation of new organs was finished. During anterior regeneration, expression signals of Ls-piwi2 and Ls-piwi3 were weak and only detected in the blastema stage. During posterior regeneration, no expression was observed for Ls-piwi2. To date, no direct evidence has been found for the existence of congenital stem cells in adult L. sanguineus. The "pluripotent cells" in regenerating tissues are likely to be dedifferentiated from other type(s) of cells.