Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(52): e202212703, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36321806

RESUMO

Effective adsorption and speedy surface reactions are vital requirements for efficient active sites in catalysis, but it remains challenging to maximize these two functions simultaneously. We present a solution to this issue by designing a series of atom-pair catalytic sites with tunable electronic interactions. As a case study, NO selective reduction occurring on V1 -W1 /TiO2 is chosen. Experimental and theoretical results reveal that the synergistic electron effect present between the paired atoms enriches high-energy spin charge around the Fermi level, simultaneously rendering reactant (NH3 or O2 ) adsorption more effective and subsequent surface reactions speedier as compared with single V or W atom alone, and hence higher reaction rates. This strategy enables us to rationally design a high-performance V1 -Mo1 /TiO2 catalyst with optimized vanadium(IV)-molybdenum(V) electronic interactions, which has exceptional activity significantly higher than the commercial or reported catalysts.

2.
Environ Sci Technol ; 55(8): 5435-5441, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33724009

RESUMO

Although ceria-based catalysts serve as an appealing alternative to traditional V2O5-based catalysts for selective catalytic reduction (SCR) of NOx with NH3, the inevitable deactivation caused by SO2 at low temperatures severely hampers the ceria-based catalysts to efficiently control NOx emissions from SO2-containing stack gases. Here, we rationally design a strong sulfur-resistant ceria-based catalyst by tuning the electronic structures of ceria highly dispersed on acidic MoO3 surfaces. By using Ce L3-edge X-ray absorption near edge structure spectra in conjunction with various surface and bulk structural characterizations, we report that the sulfur resistance of the catalysts is closely associated with the electronic states of ceria, particularly expressed by the Ce3+/Ce4+ ratio related to the size of the ceria particles. As the Ce3+/Ce4+ ratio increases up to or over 50%, corresponding to CeO2/MoO3(x %, x ≤ 2.1) with the particle size of approximately 4 nm or less, the non-bulk electronic states of ceria appear, where the catalysts start to show strong sulfur resistance. This work could provide a new strategy for designing sulfur-resistant ceria-based SCR catalysts for controlling NOx emissions at low temperatures.


Assuntos
Amônia , Enxofre , Catálise , Eletrônica , Temperatura
3.
Chem Commun (Camb) ; 58(82): 11587-11590, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36168912

RESUMO

We tune the valence state of single Au atoms anchored on CeO2(100) by treating the catalyst in H2 at different temperatures and obtain a series of Au1/CeO2(100). The transition from Au1+0.9 to Au1+0.3 leads to an enhancement of the CO oxidation activity of Au1/CeO2(100) by one order of magnitude. This work is of significance for an in-depth understanding of reaction mechanisms and rational design of high-performance catalysts.

4.
Nat Commun ; 12(1): 1191, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608540

RESUMO

Atomic metal wires have great promise for practical applications in devices due to their unique electronic properties. Unfortunately, such atomic wires are extremely unstable. Here we fabricate stable atomic silver wires (ASWs) with appreciably unoccupied states inside the parallel tunnels of α-MnO2 nanorods. These unoccupied Ag 4d orbitals strengthen the Ag-Ag bonds, greatly enhancing the stability of ASWs while the presence of delocalized 5s electrons makes the ASWs conducting. These stable ASWs form a coherently oriented three-dimensional wire array of over 10 nm in width and up to 1 µm in length allowing us to connect it to nano-electrodes. Current-voltage characteristics of ASWs show a temperature-dependent insulator-to-metal transition, suggesting that the atomic wires could be used as thermal electrical devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa