Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 209(5): 979-990, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940633

RESUMO

Domestic ducks are the important host for H5N1 highly pathogenic avian influenza virus (HPAIV) infection and epidemiology, but little is known about the duck T cell response to H5N1 AIV infection. In infection experiments of mallard ducks, we detected significantly increased CD8+ cells and augmented expression of cytotoxicity-associated genes, including granzyme A and IFN-γ, in PBMCs from 5 to 9 d postinfection when the virus shedding was clearly decreased, which suggested the importance of the duck cytotoxic T cell response in eliminating H5N1 infection in vivo. Intriguingly, we found that a CD8high+ population of PBMCs was clearly upregulated in infected ducks from 7 to 9 d postinfection compared with uninfected ducks. Next, we used Smart-Seq2 technology to investigate the heterogeneity and transcriptional differences of the duck CD8+ cells. Thus, CD8high+ cells were likely to be more responsive to H5N1 AIV infection, based on the high level of expression of genes involved in T cell responses, activation, and proliferation, including MALT1, ITK, LCK, CD3E, CD247, CFLAR, IL-18R1, and IL-18RAP. More importantly, we have also successfully cultured H5N1 AIV-specific duck T cells in vitro, to our knowledge, for the first time, and demonstrated that the CD8high+ population was increased with the duck T cell activation and response in vitro, which was consistent with results in vivo. Thus, the duck CD8high+ cells represent a potentially effective immune response to H5N1 AIV infection in vivo and in vitro. These findings provide novel insights and direction for developing effective H5N1 AIV vaccines.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Linfócitos T CD8-Positivos/patologia , Patos , Granzimas
2.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902398

RESUMO

Influenza A virus (IAV) infections have been a serious hazard to public health everywhere. With the growing concern of drug-resistant IAV strains, there is an urgent need for novel anti-IAV medications, especially those with alternative mechanisms of action. Hemagglutinin (HA), an IAV glycoprotein, plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a good target for developing anti-IAV drugs. Panax ginseng is a widely used herb in traditional medicine with extensive biological effects in various disease models, and its extract was reported to show protection in IAV-infected mice. However, the main effective anti-IAV constituents in panax ginseng remain unclear. Here, we report that ginsenoside rk1 (G-rk1) and G-rg5, out of the 23 screened ginsenosides, exhibit significant antiviral effects against 3 different IAV subtypes (H1N1, H5N1, and H3N2) in vitro. Mechanistically, G-rk1 blocked IAV binding to sialic acid in a hemagglutination inhibition (HAI) assay and an indirect ELISA assay; more importantly, we showed that G-rk1 interacted with HA1 in a dose-dependent manner in a surface plasmon resonance (SPR) analysis. Furthermore, G-rk1 treatment by intranasal inoculation effectively reduced the weight loss and mortality of mice challenged with a lethal dose of influenza virus A/Puerto Rico/8/34 (PR8). In conclusion, our findings reveal for the first time that G-rk1 possesses potent anti-IAV effects in vitro and in vivo. We have also identified and characterized with a direct binding assay a novel ginseng-derived IAV HA1 inhibitor for the first time, which could present potential approaches to prevent and treat IAV infections.


Assuntos
Ginsenosídeos , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Antivirais/farmacologia , Ginsenosídeos/farmacologia , Hemaglutininas/farmacologia , Vírus da Influenza A Subtipo H3N2 , Ligação Viral , Vírus da Influenza A/fisiologia
3.
Microorganisms ; 11(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37630565

RESUMO

Salmonella enterica subsp. enterica serovar Typhimurium (S. typhimurium) is an important zoonotic pathogen with important public health significance. To understand S. typhimurium's epidemiological characteristics in China, multi-locus sequence typing, biofilm-forming ability, antimicrobial susceptibility testing, and resistant genes of isolates from different regions and sources (human, food) were investigated. Among them, ST34 accounted for 82.4% (243/295), with ST19 ranking second (15.9%; 47/295). ST34 exhibited higher resistance levels than ST19 (p < 0.05). All colistin, carbapenem, and ciprofloxacin-resistant strains were ST34, as were most cephalosporin-resistant strains (88.9%; 32/36). Overall, 91.4% (222/243) ST34 isolates were shown to have multidrug resistance (MDR), while 53.2% (25/47) ST19 isolates were (p < 0.05). Notably, 97.8% (45/46) of the MDR-ACSSuT (resistance to Ampicillin, Chloramphenicol, Streptomycin, Sulfamethoxazole, and Tetracycline) isolates were ST34, among which 69.6% (32/46) of ST34 isolates were of human origin, while 30.4% (14/46) were derived from food (p < 0.05). Moreover, 88.48% (215/243) ST34 showed moderate to strong biofilm-forming ability compared with 10.9% (5/46) ST19 isolates (p < 0.01). This study revealed the emergence of high-level antibiotic resistance S. typhimurium ST34 with strong biofilm-forming ability, posing concerns for public health safety.

4.
Transbound Emerg Dis ; 69(4): 2052-2064, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34132051

RESUMO

Swine are considered as 'mixing vessels' of influenza A viruses and play an important role in the generation of novel influenza pandemics. In this study, we described that the H3N2 swine influenza (swH3N2) viruses currently circulating in pigs in Guangdong province carried six internal genes from 2009 pandemic H1N1 virus (pmd09), and their antigenicity was obviously different from that of current human H3N2 influenza viruses or recommended vaccine strains (A/Guangdong/1194/2019, A/Hong Kong/4801/2014). These swH3N2 viruses preferentially bonded to the human-like receptors, and efficiently replicated in human, canine and swine cells. In addition, the virus replicated in turbinate and trachea of guinea pigs, and efficiently transmitted among guinea pigs, and virus shedding last for 6 days post-infection (dpi). The virus replicated in the respiratory tract of pigs, effectively transmitted among pigs, and virus shedding last until 9 dpi. Taken together, these current swH3N2 viruses might have the zoonotic potential. Strengthening surveillance and monitoring the pathogenicity of such swH3N2 viruses are urgently needed.


Assuntos
Doenças do Cão , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , China/epidemiologia , Cães , Cobaias , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus Reordenados/genética , Suínos , Doenças dos Suínos/epidemiologia , Virulência
5.
Front Microbiol ; 12: 628979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767679

RESUMO

Canine influenza viruses (CIVs) could be a source of influenza viruses which infect humans because canine are important companion pets. To assess the potential risk of H3N2 CIVs currently circulating in southern China to public health, biological characteristics of A/canine/Guangdong/DY1/2019 (CADY1/2019) were detected. CADY1/2019 bound to both avian-type and human-type receptors. CADY1/2019 had a similar pH value for HA protein fusion to human viruses, but its antigenicity was obviously different from those of current human H3N2 influenza viruses (IVs) or the vaccine strains recommended in the North hemisphere. CADY1/2019 effectively replicated in the respiratory tract and was transmitted by physical contact among guinea pigs. Compared to human H3N2 IV, CADY1/2019 exhibited higher replication in MDCK, A549, 3D4/21, ST, and PK15 cells. Sequence analysis indicated that CADY1/2019 is an avian-origin virus, and belongs to the novel clade and has acquired many adaptation mutations to infect other mammals, including human. Taken together, currently circulating H3N2 CIVs have a zoonotic potential, and there is a need for strengthening surveillance and monitoring of their pathogenicity.

6.
Front Microbiol ; 11: 602124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391219

RESUMO

Currently, H9N2 avian influenza viruses (H9N2 AIVs) globally circulate in poultry and have acquired some adaptation to mammals. However, it is not clear what the molecular basis is for the variation in receptor-binding features of the H9N2 AIVs. The receptor-binding features of 92 H9N2 AIVs prevalent in China during 1994-2017 were characterized through solid-phase ELISA assay and reverse genetics. H9N2 AIVs that circulated in this period mostly belonged to clade h9.4.2. Two increasing incidents occurred in the ability of H9N2 AIVs to bind to avian-like receptors in 2002-2005 and 2011-2014. Two increasing incidents occurred in the strength of H9N2 AIVs to bind to human-like receptors in 2002-2005 and 2011-2017. We found that Q227M, D145G/N, S119R, and R246K mutations can significantly increase H9N2 AIVs to bind to both avian- and human-like receptors. A160D/N, Q156R, T205A, Q226L, V245I, V216L, D208E, T212I, R172Q, and S175N mutations can significantly enhance the strength of H9N2 AIVs to bind to human-like receptors. Our study also identified mutations T205A, D208E, V216L, Q226L, and V245I as the key sites leading to enhanced receptor binding of H9N2 AIVs during 2002-2005 and mutations S119R, D145G, Q156R, A160D, T212I, Q227M, and R246K as the key sites leading to enhanced receptor binding of H9N2 AIVs during 2011-2017. These findings further illustrate the receptor-binding characteristics of avian influenza viruses, which can be a potential threat to public health.

7.
Polymers (Basel) ; 11(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698868

RESUMO

In this study, the thermal stability and combustion performance of basalt fiber reinforced polypropylene (BFRPP) composite and pure polypropylene (PP) were compared. The results show that the basalt fiber has no positive effect on increasing the initial decomposition temperature of PP, but it could reduce the maximum thermal decomposition rate and increase the temperature of the maximum thermal decomposition rate. Adding basalt fiber to PP could slightly reduce the limiting oxygen index. At the same oxygen concentration, the BFRPP burned significantly more slowly than the PP. In addition, during the combustion, it was observed that the BFRPP showed a better anti-melt dripping effect than the PP. The results from the cone calorimeter test show that, under the same external heat flux, the time-to-ignition (TTI) of BFRPP was less than that of PP. This indicated that BFRPP was easier to ignite than PP. It was also found that the reciprocal of the square root of the TTI of both has a linear relationship with external heat flux. BFRPP has a lower peak heat release rate and total heat release than PP. Moreover, BFRPP produced less smoke than PP when burned.

8.
J Agric Food Chem ; 65(8): 1659-1668, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28168876

RESUMO

Stilbenes have been recognized for their beneficial physiological effects on human health. Stilbene synthase (STS) is the key enzyme of resveratrol biosynthesis and has been studied in numerous plants. Here, four MaSTS genes were isolated and identified in mulberry (Morus atropurpurea Roxb.). The expression levels of MaSTS genes and the accumulation of trans-resveratrol, trans-oxyresveratrol, and trans-mulberroside A were investigated in different plant organs. A novel coexpression system that harbored 4-coumarate:CoA ligase gene (Ma4CL) and MaSTS was established. Stress tests suggested that MaSTS genes participate in responses to salicylic acid, abscisic acid, wounding, and NaCl stresses. Additionally, overexpressed MaSTS in transgenic tobacco elevated the trans-resveratrol level and increased tolerance to drought and salinity stresses. These results revealed the major MaSTS gene, and we evaluated its function in mulberry, laying the foundation for future research on stilbene metabolic pathways in mulberry.


Assuntos
Aciltransferases/genética , Escherichia coli/metabolismo , Morus/enzimologia , Proteínas de Plantas/genética , Estilbenos/metabolismo , Aciltransferases/metabolismo , Vias Biossintéticas , Escherichia coli/genética , Engenharia Metabólica , Morus/genética , Proteínas de Plantas/metabolismo , Resveratrol , Nicotiana/genética , Nicotiana/metabolismo
9.
Plant Physiol Biochem ; 115: 107-118, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28355585

RESUMO

Chalcone synthase (CHS) is the pivotal enzyme that catalyzes the first committed step of the phenylpropanoid pathway leading to flavonoids. Here, five CHS genes were determined in mulberry (Morus atropurpurea Roxb.). Interestingly, phylogenetic analysis tended to group three MaCHSs in the stilbene synthase (STS) family and initially annotated these as MaSTSs. A co-expression system that harbored a 4-coumarate:CoA ligase gene and one of the candidate genes was established to determine the functions of this novel gene family. The fermentation result demonstrated that MaSTS in fact encoded a CHS enzyme, and was consequently retermed MaCHS. Tissue-specific expression analysis indicated that MaCHS1/MaCHS2 was highly abundant in fruit, and MaCHS4 had significant expression in root bark, stem bark and old leaves, while MaCHS3 and MaCHS5 were more expressed in old leaves. Subcellular localization experiments showed that MaCHS was localized to the cytoplasm. Transcription levels suggested MaCHS genes were involved in a series of defense responses. Over-expression of MaCHS in transgenic tobacco modified the metabolite profile, and resulted in elevated tolerance to a series of environmental stresses. This study comprehensively evaluated the function of MaCHS genes and laid the foundation for future research on MaCHS in mulberry.


Assuntos
Aciltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Morus/enzimologia , Aciltransferases/genética , Fermentação , Flavanonas/biossíntese , Morus/genética , Morus/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo
10.
PLoS One ; 11(6): e0157414, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27276057

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0155814.].

11.
PLoS One ; 11(5): e0155814, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27213624

RESUMO

A small, multigene family encodes 4-coumarate:CoA ligases (4CLs) that catalyze the ligation of CoA to hydroxycinnamic acids, a branch point directing metabolites to flavonoid or monolignol pathways. In this study, we characterized four 4CL genes from M. notabilis Genome Database, and cloned four Ma4CL genes from M. atropurpurea cv. Jialing No.40. A tissue-specific expression analysis indicated that Ma4CL3 was expressed at higher levels than the other genes, and that Ma4CL3 was strongly expressed in root bark, stem bark, and old leaves. Additionally, the expression pattern of Ma4CL3 was similar to the trend of the total flavonoid content throughout fruit development. A phylogenetic analysis suggested that Mn4CL1, Mn4CL2, and Mn4CL4 belong to class I 4CLs, and Mn4CL3 belongs to class II 4CLs. Ma4CL genes responded differently to a series of stresses. Ma4CL3 expression was higher than that of the other Ma4CL genes following wounding, salicylic acid, and ultraviolet treatments. An in vitro enzyme assay indicated that 4-coumarate acid was the best substrate among cinnamic acid, 4-coumarate acid, and caffeate acid, but no catalytic activity to sinapate acid and ferulate acid. The results of subcellular localization experiments showed that Ma4CL3 localized to the cytomembrane, where it activated transcription. We used different vectors and strategies to fuse Ma4CL3 with stilbene synthase (STS) to construct four Ma4CL-MaSTS co-expression systems to generate resveratrol. The results indicated that only a transcriptional fusion vector, pET-Ma4CL3-T-MaSTS, which utilized a T7 promoter and lac operator for the expression of MaSTS, could synthesize resveratrol.


Assuntos
Clonagem Molecular/efeitos dos fármacos , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Morus/enzimologia , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas , Morus/genética , Família Multigênica , Filogenia , Casca de Planta/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Propionatos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa