Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 894: 164960, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348724

RESUMO

This study investigated the interactions between rhizosphere and endosphere bacteria during phytoextraction and how the interactions affect arsenic (As) extraction and carbon (C) fixation of plants. Pot experiments, high-throughput sequencing, metabonomics, and network analysis were integrated. Results showed that positive correlations dominated the interconnections within modules (>95 %), among modules (100 %), and among keystone taxa (>72 %) in the bacterial networks of plant rhizosphere, root endosphere, and shoot endosphere. This confirmed that cooperative interactions occurred between bacteria in the rhizosphere and endosphere during phytoextraction. Modules and keystone taxa positively correlating with plant As extraction and C fixation were identified, indicating that modules and keystone taxa promoted plant As extraction and C fixation simultaneously. This is mainly because modules and keystone taxa in plant rhizosphere, root endosphere, and shoot endosphere carried arsenate reduction and C fixation genes. Meanwhile, they up-regulated the significant metabolites related to plant As tolerance. Additionally, shoot C fixation increased peroxidase activity and biomass thereby facilitating plant As extraction was confirmed. This study revealed the mechanisms of plant-associated bacterial interactions contributing to plant As extraction and C fixation. More importantly, this study provided a new angle of view that phytoextraction can be applied to achieve multiple environmental goals, such as simultaneous soil remediation and C neutrality.


Assuntos
Arsênio , Microbiota , Arsênio/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo , Bactérias/metabolismo , Rizosfera , Ciclo do Carbono
2.
Sci Total Environ ; 905: 167279, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741386

RESUMO

The transfer of antibiotic resistance genes (ARGs) from soils to plants is poorly understood, especially the role of host bacteria in soils and its impact on seed-derived bacteria. Wheat (Triticum aestivum L.) was thus used to fill the gap by conducting pot experiments, with target ARGs and bacterial community analyzed. Results showed that the relative abundances of target ARGs gradually decreased during transfer of ARGs from the rhizosphere soil to root and shoot. Host bacteria in the rhizosphere soil were the primary source of ARGs in wheat. The 38, 21, and 19 potential host bacterial genera of target ARGs and intI1 in the rhizosphere soil, root, and shoot were identified, respectively, and they mainly belonged to phylum Proteobacteria. The abundance of ARGs carried by pathogenic Corynebacterium was reduced in sequence. During transfer of ARGs from the rhizosphere soil to root and shoot, some seed-derived bacteria and pathogenic Acinetobacter obtained ARGs through horizontal gene transfer and became potential host bacteria. Furthermore, total organic carbon, available nitrogen of the rhizosphere soil, water use efficiency, vapor pressure deficit, and superoxide dismutase of plants were identified as the key factors affecting potential host bacteria transfer in soils to wheat. This work provides important insights into transfer of ARGs and deepens our understanding of potential health risks of ARGs from soils to plants.


Assuntos
Antibacterianos , Triticum , Antibacterianos/farmacologia , Solo , Genes Bacterianos , Microbiologia do Solo , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Sementes , Esterco/microbiologia
3.
Chemosphere ; 329: 138678, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059196

RESUMO

This is the first study investigating the effects of freeze-thaw (FT) and microplastics (MPs) on the distribution of antibiotic resistance genes (ARGs) in soil aggregates (i.e., soil basic constituent and functional unit) via microcosm experiments. The results showed that FT significantly increased the total relative abundance of target ARGs in different aggregates due to the increase in intI1 and ARG host bacteria. However, polyethylene MPs (PE-MPs) hindered the increase in ARG abundance caused by FT. The host bacteria carrying ARGs and intI1 varied with aggregate size, and the highest number of hosts was observed in micro-aggregates (<0.25 mm). FT and MPs altered host bacteria abundance by affecting aggregate physicochemical properties and bacterial community and enhanced multiple antibiotic resistance via vertical gene transfer. Although the dominant factors affecting ARGs varied with aggregate size, intI1 was a co-dominant factor in various-sized aggregates. Furthermore, other than ARGs, FT, PE-MPs, and their integration promoted the proliferation of human pathogenic bacteria in aggregates. These findings suggested that FT and its integration with MPs significantly affected ARG distribution in soil aggregates. They amplified antibiotic resistance environmental risks, contributing to a profound understanding of soil antibiotic resistance in the boreal region.


Assuntos
Antibacterianos , Solo , Humanos , Antibacterianos/farmacologia , Solo/química , Microplásticos , Plásticos , Genes Bacterianos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa