Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 9710-9729, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571199

RESUMO

Extreme scenario of lightning strikes would generate ultra-fast rotation of state-of-polarization (RSOP) up to 5.1 Mrad/s and large polarization mode dispersion (PMD) in optical ground wire (OPGW). Unfortunately, the conventional multiple modulus algorithm (MMA) cannot equalize these polarization impairments in polarization division multiplexing (PDM) probabilistic constellation shaping (PCS)-64QAM system. Moreover, due to unavoidable linearization errors and higher modulation order, the extended Kalman filter based on measurement equations of concatenated multiplication (EKF-CM) is highly unstable and fails under such scenarios. To address the above issues, we have proposed a joint equalization scheme of PMD and RSOP, which fuses probability-aware with square-root cubature Kalman filter (PA-SCKF). Firstly, according to the characteristic that the amplitude of PCS signals obeys mixed Rician distribution, the scheme combines maximum a posteriori criterion to obtain the optimal radius of constellation ring which the received symbol belongs to, for the sake of calculating the innovations of SCKF. Secondly, it performs joint equalization of PMD and RSOP impairments based on SCKF and time-frequency conversion architecture. 28GBaud PDM PCS-64QAM simulation results demonstrate that our scheme can jointly equalize maximum impairments of 8.34 Mrad/s RSOP and 90ps DGD under entropy of 4.5bits/symbol. Additionally, only 0.9 dB OSNR penalty is obtained after joint equalization of 6 Mrad/s RSOP with 70ps DGD impairments. Even under entropy of 5.5bit/symbol, it can still jointly equalize impairments of 6.05 Mrad/s RSOP with 60ps DGD. Furthermore, 16GBaud PCS-64QAM experimental results indicate that the maximum joint equalization performances of PA-SCKF scheme under entropy of 4.5bit/symbol and 5bit/symbol are 17 Mrad/s RSOP with 52ps DGD, and 9 Mrad/s RSOP with 52ps DGD, respectively. These results manifest that our PA-SCKF scheme outperforms both MMA and EKF-CM schemes. Importantly, its complexity is on an order of O(Llog2 L), which is comparable to that of EKF-CM scheme.

2.
Opt Express ; 32(4): 5095-5116, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439245

RESUMO

In this paper, we improve the learned digital back propagation (LDBP) and propose a novel joint intra and inter-channel nonlinearity compensation scheme for polarization division multiplexing wavelength-division multiplexed (PDM-WDM) systems. From the perspective of interpretable neural network, the scheme realizes the alternating compensation of chromatic dispersion (CD) and nonlinearity based on physical models. The chromatic dispersion compensation (CDC) adopts one-dimensional convolution operation in the time domain. Moreover, the pulse-broadening effect is introduced into the overlap-and-save method. For nonlinear compensation, the improved joint model is applied, and the impact of the intra-channel pulse broadening and the walk-off effect between different channels caused by CD on the nonlinear effect is considered. To validate the effectiveness of the proposed scheme, we construct an 11-channel simulation system of 36 GBaud PDM uniform 16 quadrature amplitude modulation (PDM-16QAM) 1600 km and 64 GBaud PDM-64QAM 400 km, as well as a 5-channel experimental system of 28 GBaud PDM-16QAM 806.4 km. The simulation results show that the performance of PDM-16QAM with 0.5 steps per span and PDM-64QAM with 2 steps per span improve the Q-factor by approximately 0.75 dB and 0.54 dB at the optimal launch power, compared with the linear compensation scheme. The transmission performance of PDM-16QAM is higher than that of digital back propagation with 5 steps per span (DBP-5StPS), and the complexity is only 31.36% of that of DBP-5StPS. The performance of PDM-64QAM is higher than that of DBP-10StPS, with a complexity of 62.72%. The experimental results show that the performance of PDM-16QAM with 0.5 steps per span is improved with 0.86 dB Q-factor improvement compared with the linear compensation scheme at the optimal launch power, and the performance of the proposed scheme is higher than that of DBP-5StPS with a complexity of only 23.68%.

3.
Opt Express ; 32(4): 6366-6381, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439341

RESUMO

For the discrete spectrum nonlinear frequency division multiplexing (DS-NFDM) 16/64 amplitude phase shift keying (APSK) system, the inevitable laser impairments including frequency offset (FO) and carrier phase noise (CPN) would cause different rotations of the received signal constellations. In addition, the combined effect of FO and amplifier spontaneous emission (ASE) noise induces the eigenvalue shift, accordingly the residual channel impairment (RCI) is inevitably yielded. To address the above problems, we deduce the joint impairment model of FO, CPN and RCI, and then propose a joint equalization scheme using two-stage cascaded extended Kalman filter (TSC-EKF) for these impairments. It performs frequency offset compensation in the first stage, subsequently carries out joint equalization of CPN and RCI in the second stage. Meanwhile, the minimum Euclidean distance and phase difference between the received symbols and the ideal 16/64APSK constellations are ingeniously fused to calculate the innovations of TSC-EKF. The effectiveness has been verified by 2 GBaud DS-NFDM 16/64 APSK simulations and DS-NFDM 16APSK transmission experiments. The results demonstrate that when performing the joint equalization of FO, CPN and RCI, the maximum FOE range of TSC-EKF scheme achieves 1.2 and 9.6 times as that of nonlinear frequency domain (NFD) scheme and fast Fourier transform -Like (FFT-Like) scheme, respectively. Furthermore, its maximum LW tolerance reaches 3.3 times as that of the M-th power scheme. Importantly, the complexity of TSC-EKF is 63.4% as that of NFD scheme and on an order of O(N).

4.
Opt Express ; 31(16): 26791-26806, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710530

RESUMO

In this paper, a security enhanced physical layer encryption scheme is proposed for coherent optical polarization division multiplexing (PDM) systems. The concept of a digital optical polarization scrambler (DOPS) is introduced to apply high speed rotation of state of polarization (RSOP) to the transmitted signal, which enables encryption based on polarization perturbations and offers superior flexibility in polarization management. By utilizing different combinations of digital polarization device matrices and adjusting their key parameters, four encryption modes are designed. The proposed encryption scheme is successfully implemented in a PDM-QPSK system at the data rate of 32 Gbps. Experimental results demonstrate that authorized users can successfully decrypt the received signal, while the eavesdroppers cannot derive useful information with a bit error rate (BER) at approximately 0.5. To enhance system security, a 5-D chaotic system is introduced with superior properties of high sensitivity to initial values and improved uniform distribution, which guarantees the large entropy and further the system's security. This scheme can effectively prevent against brute attacks with the expanded key space of 1060.

5.
Opt Lett ; 48(21): 5707-5710, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910739

RESUMO

We propose an amplified spontaneous emission (ASE) noise mitigation scheme utilizing digital frequency offset loading (DFO-loading) for discrete spectrum nonlinear frequency division multiplexing (DS-NFDM) systems. Firstly, based on the one-to-one mapping relationship between frequency offsets and eigenvalue positions, the transmitter side encodes 4-bit information onto 16 kinds of different digital frequency offsets. Then, a sliding window-assisted eigenvalue position (SWA-EP) decoding technology is further proposed to substitute the classical channel equalization and carrier phase recovery processes, with the purpose of recovering the original information. The numerical and experimental results demonstrate that, compared with b-coefficient 16 quadrature amplitude modulation (QAM) scheme, Q-factor gains are 2.1 dB under 15 dB optical signal-to-noise ratio (OSNR) and 1.8 dB after 800 km fiber transmission, respectively. Moreover, its complexity is only 0.6% of the b-coefficient scheme. The DFO-loading scheme offers an effective and low-complexity way to mitigate ASE noise of DS-NFDM system.

6.
Appl Opt ; 62(4): 1066-1075, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821164

RESUMO

Equalization-enhanced phase noise (EEPN) has emerged as one of the major impairments that cannot be ignored for a high baud rate Stokes vector direct detection (SVDD) system. When EEPN interacts with the rotation of state-of-polarization (RSOP) and chromatic dispersion (CD), the joint impairment effects become even more complicated. To achieve the joint equalization of EEPN, RSOP, and CD impairments of a high baud rate SVDD system, this paper first derives a joint impairment model of these three kinds of impairments, and then proposes a joint equalization scheme of EEPN, RSOP, and CD with a sliding window assisted extended Kalman filter (SWA-EKF). The SWA-EKF scheme first tracks RSOP in the time domain, subsequently compensates CD in the frequency domain, and finally performs EEPN mitigation in the time domain again. The effectiveness of the proposed scheme has been verified by a 60 GBaud SVDD-16QAM simulation system. The results show that when these three impairments are jointly equalized, the SWA-EKF scheme can track RSOP as fast as 3 Mrad/s, cumulative dispersion up to 1600 ps/nm, and EEPN caused by laser linewidth up to 3 MHz. In addition, with an optical signal-to-noise ratio penalty of 0.3 dB, it could increase 35 G baud rate under 3 MHz laser linewidth for the SVDD system. More importantly, its total complexity can be reduced to an order of O(N log N).

7.
Opt Express ; 30(26): 48112-48132, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558725

RESUMO

Four system frameworks based on carrier assisted differential detection (CADD) receivers for offset double sideband (DSB) signal transmission, including offset DSB asymmetric CADD (offset DSB A-CADD), offset DSB symmetric CADD (offset DSB S-CADD), offset DSB parallel double delay asymmetric CADD (offset DSB PDD-A-CADD), and offset DSB parallel double delay symmetric CADD (offset DSB PDD-S-CADD) are proposed to reduce the requirement for carrier-to-signal power ratio (CSPR) and improve the spectral efficiency (SE) of the self-coherent detection. These frameworks accommodate signal-signal beat interference (SSBI) and efficiently solve the noise enhancement by placing a frequency gap as wide as the signal bandwidth in the middle of the left and right sideband signal. Massive theoretical derivation and simulation verification illustrated that compared with previous interleaved A-CADD, our system achieve field recovery under the condition of 0 dB CSPR with the improvement of SE by 5%, and the OSNR sensitivity is improved by 4.5 dB with 20% forward error correction (FEC) threshold. In addition, due to the devices' limited bandwidth (BW), the information-bearing signal is attenuated at the high-frequency region. And since SSBI has less influence on the signal in the high-frequency region, the frequency gap of the four offset DSB CADD schemes are compressed to utilize as much low-frequency resource as possible and improve the SE. Efficient compression of the frequency gap from 50% to 32.3% with 20% FEC threshold and 50% to 37.7% with 7% FEC threshold at 0 dB CSPR is achieved, and only a slight performance degradation is observed. At this time, the SE is improved by 22.7% and 17.3% with different FEC thresholds, respectively, compared with the 5% frequency gap interleaved A-CADD.

8.
Opt Express ; 30(20): 37175-37192, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258633

RESUMO

Moderate or strong shaping conditions reduce the occurrence probability of the outermost ring constellation points of probabilistically shaped (PS)-M quadrature amplitude modulation (QAM) signals, which easily causes the peaks in the 4th power periodogram of received signals be submerged, accordingly the classical frequency offset estimation (FOE) scheme using 4th power fast Fourier transform (FFT) cannot be applied in PS-MQAM system. To solve this issue, we have proposed an optimal decision threshold assisted quadrature phase shift keying (QPSK)-partition blind FOE scheme. Firstly, the proposed scheme utilizes an optimal decision threshold assisted method for the symbol decision of received symbols, then chooses the symbols on multiple specific QPSK-shape rings. Secondly, the amplitude of each symbol selected above is normalized and uniformly augmented to 18. Finally, it carries out FOE using an improved time-domain 4th power feedforward method that eliminates the time interval. The effectiveness of the proposed scheme has been verified by 28 GBaud polarization division multiplexing (PDM) PS-16/64QAM simulations and 28/8 GBaud PS-16/64QAM experiments. The results obtained by this scheme present that under moderate or strong shaping conditions, the generalized mutual information (GMI) increases with optical signal-to-noise ratio (OSNR) and eventually exceeds the corresponding GMI threshold. Besides that, the FOE range can reach [-Rs/8, Rs/8], where Rs denotes the baud rate. When OSNRs are higher than 16 dB and 19.5 dB, the NMSEs of PS-16QAM-3/3.6 are lower than 1e-7, respectively. For PS-64QAM-4.4/5, the NMSEs achieve lower than 1e-6 after OSNR increases to 20.3 dB and 23.4 dB, respectively. More importantly, the overall complexity can be reduced to O(N), which is at most as 26.5% as that of FFT FOE scheme.

9.
Appl Opt ; 61(7): 1606-1615, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297834

RESUMO

In this study, we propose and verify a joint multi-parameter optical performance monitoring (OPM) scheme based on trajectory information for the Stokes vector direct detection (SVDD) system, for the first time, to the best of our knowledge. Here, the proposed scheme first performs quantification of the trajectory to construct trajectory information, which not only presents diversity of the received symbols in spatial dimension, but also records the jump pattern among symbols in time dimension. Subsequently, eigenanalysis is introduced to extract critical features hidden in trajectory information and simultaneously achieve the purpose of dimensionality reduction. The effectiveness of the scheme is verified through 14/28 GBaud SVDD binary phase shift keying/quadrature phase shift keying/-8 quadrature amplitude modulation (QAM)/-16QAM/-32QAM/-64QAM simulation systems. Under the scenario of joint modulation format (MF) identification and optical signal to noise ratio (OSNR) monitoring, the identification rates of all six kinds of MFs achieve 100% within their corresponding reasonable OSNR ranges. Besides that, the average mean absolute error (MAE) of the monitored OSNRs are obtained as 0.03 dB, 0.22 dB, 0.36 dB, 0.41 dB, 0.46 dB, and 0.49 dB for those six kinds of MFs, respectively. Under the scenario of multi-parameter OPM, SVDD-8QAM/-16QAM/-32QAM signals are 100% successfully identified when residual chromatic dispersion (RCD) is located in the ranges of 0-200 ps/nm, 0-190 ps/nm, and 0-160 ps/nm, respectively. The average MAE of OSNR monitoring and RCD estimation for these three commonly used MFs are 1.08 dB and 3.23 ps/nm, respectively. Moreover, the study also demonstrates the robustness for baud rates and a relatively simpler calculation complexity about the proposed OPM scheme.

10.
Appl Opt ; 61(3): 851-857, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35200794

RESUMO

Modulation format identification (MFI) is a key technology in optical performance monitoring for the next-generation optical network, such as the intelligent cognitive optical network. An MFI scheme based on the Calinski-Harabasz index for a polarization-division multiplexing (PDM) optical fiber communication system is proposed. The numerical simulations were carried out on a 28 Gbaud PDM communication system. The results show that the required minimum optical signal-to-noise ratio values of each modulation format to achieve 100% identification accuracy are all equal to or lower than their corresponding 7% forward error correction thresholds, and the proposed scheme is robust to residual chromatic dispersion. Meanwhile, the proposed scheme was further verified by 20 Gbaud PDM-QPSK/16QAM/32QAM long-haul fiber transmission experiments. The results show that the scheme has a good reliability when fiber non-linear impairments exist. In addition, the complexity of the scheme is significantly lower than that of other clustering-based MFI schemes.

11.
Appl Opt ; 61(36): 10744-10754, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606934

RESUMO

We propose a joint monitoring scheme of nonlinear optical signal-to-noise ratio (O S N R N L ) estimation and modulation format identification (MFI) in wavelength division multiplexing (WDM) systems. Based on the abundant information of both nonlinear noise (NLN) and modulation format (MF) in received signals, this scheme first counts the trajectory information of all adjacent constellation points, and then quantifies them into the adjacent matrix. Subsequently, the eigenvectors corresponding to the largest eigenvalues are extracted via eigen-decomposition of the adjacent matrix, which characterize the information of NLN and MF effectively. Finally, the eigenvectors are fed into multitask one-dimensional convolutional neural network to perform O S N R N L estimation and MFI simultaneously. To verify the effectiveness of the scheme, five-channel 28 GBaud polarization division multiplexing (PDM) -16/32/64 quadrature amplitude modulation (QAM) WDM simulation systems are built by VPI. The simulation results demonstrate that, for PDM-16/32/64QAM signals, the mean absolute errors of O S N R N L estimation are 0.18, 0.17, and 0.20 dB, respectively. At the same time, the identification accuracy rates of these three MFs have achieved 100% within the ranges of estimated O S N R N L . Furthermore, a three-channel 28 GBaud WDM experimental system is constructed to further investigate the effectiveness of trajectory information for O S N R N L estimation. The experimental results show that the O S N R N L estimation errors of PDM-16QAM are less than 0.5 dB. In addition, our analysis of complexity from two aspects of trajectory information extraction and neural network model shows that the overall complexity scale of this scheme is O(K i,3 M C i,3 C o,3).

12.
Appl Opt ; 61(36): 10755-10765, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606935

RESUMO

In multiple-eigenvalue modulated nonlinear frequency division multiplexing (NFDM) systems, the noise degrades the accuracy of the nonlinear Fourier transform (NFT) algorithm, resulting in perturbations in the received eigenvalues and the corresponding discrete spectrum. Moreover, with the increase in the number of eigenvalues and the order of the modulation formats, the impact of noise on the performance of the system is even more. A noise equalization scheme based on complex-valued artificial neural network (c-ANN) for multiple-eigenvalue modulated NFDM systems is proposed. This sceheme inputs the eigenvalues perturbation and the impaired discrete spectrum corresponding to the eigenvalues into the c-ANN in complex form. The scheme constructs a complex-valued logic structure with both amplitude and phase information, overlapping reuse input features and, thereby, effectively reducing the effect of noise on the multiple-eigenvalue NFDM system. The effectiveness of the scheme is verified in long-haul seven-eigenvalue modulated single-polarization NFDM simulation systems with 1 GBaud 16APSK/16QAM/64APSK/64QAM modulation formats, and the results show that the scheme outperforms the NFT receiving without equalization by 1 to 2 orders of magnitude in terms of bit error rate (BER). Among them, the transmission distance of the 64APSK signal after equalization exceeds 800 km while the BER meets 7% forward error correction (FEC) threshold, which is 600 km longer than that of the disequilibrium case, and the spectral efficiency (SE) can reach 1.85 bit/s/Hz. Compared with other schemes, the proposed scheme has better equalization performance under the same complexity, and the complexity can be reduced by half or even under the same performance.

13.
Appl Opt ; 60(31): 9933-9942, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807183

RESUMO

Blind modulation format identification (MFI) is indispensable for correct signal demodulation and optical performance monitoring in future elastic optical networks (EON). Existing MFI schemes based on a clustering algorithm in Stokes space have gained good performance, while only limited types of modulation formats could be correctly identified, and the complexities are relatively high. In this work, we have proposed an MFI scheme with a low computational complexity, which combines an improved particle swarm optimization (I-PSO) clustering algorithm with a 2D Stokes plane. The main idea of I-PSO is to add a new field of view on each particle and limit each particle to only communicate with its neighbor particles, so as to realize the correct judgment of the number of multiple clusters (local extrema) on the density images of the s2-s3 plane. The effectiveness has been verified by 28 GBaud polarization division multiplexing (PDM)-BPSK/PDM-QPSK/PDM-8QAM/PDM-16QAM/PDM-32QAM/PDM-64QAM simulation EON systems and 28 GBaud PDM-QPSK/PDM-8QAM/PDM-16QAM/PDM-32QAM proof-of-concept transmission experiments. The results show that, using this MFI scheme, the minimum optical signal-to-noise ratio (OSNR) values to achieve 100% MFI success rate are all equal to or lower than those of the corresponding 7% forward error correction (FEC) thresholds. At the same time, the MFI scheme also obtains good tolerance to residual chromatic dispersion and differential group delay. Besides that, the proposed scheme achieves 100% MFI success rate within a maximum launch power range of -2∼+6 dBm. More importantly, its computational complexity can be denoted as O(N).

14.
Opt Express ; 28(14): 20249-20263, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680089

RESUMO

We propose a blind and low-complexity modulation format identification (MFI) scheme for elastic optical networks (EONs). Since the square operation reduces half the number of the clusters in Stokes space, the scheme directly performs principal component analysis (PCA) on Stokes parameters after square operation. This greatly reduces the dimensionality of received signals from 3 × N to 3 × 3. Subsequently, three obtained principal components (PCs) are employed synthetically to identify the modulation formats. The effectiveness is first verified through 28 GBaud polarization division multiplexing (PDM)-BPSK/-QPSK/-8QAM/-16QAM/-32QAM/-64QAM simulation systems. Only using 2048 symbols, the required minimum optical signal-to-noise ratio (OSNR) values to achieve 100% MFI success rate are all equal to or lower than their corresponding 7% forward error correction (FEC) thresholds. Besides that, the scheme also obtains significant tolerances to residual chromatic dispersion (CD) and differential group delay (DGD). Finally, the proposed scheme is further verified by 20 GBaud PDM-QPSK/-16QAM/-32QAM long-haul transmission experiments. The results demonstrate that the scheme exhibits good resilience towards fiber nonlinear impairments. More importantly, compared with other four kinds of MFI schemes, the used symbol number to achieve 100% MFI success rate notably equals to at most 2/5 as that of other schemes, and its time complexity can be reduced to O(N).

15.
Opt Express ; 27(8): 11557-11570, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052999

RESUMO

We propose a joint blind equalization method for chromatic dispersion (CD) and ultra-fast rotation of state-of-polarization (RSOP) in a Stokes vector direct detection (SV-DD) system based on a new time-frequency domain Kalman filter structure. In an SV-DD system, the impairments induced by CD and RSOP possess a nonlinear form. Therefore, CD and RSOP cannot be treated sequentially, which causes difficulty in jointly equalizing these two impairments using an ordinary algorithm. The Kalman filter was proven to be effective in equalizing polarization effects in a coherent receiver. However, this approach has inherent limitations given that the Kalman filter was originally presented as a method implemented in the time domain whereas CD is eventually induced in the frequency domain. In this report, the proposed time-frequency domain Kalman filter can facilitate CD compensation in the frequency domain and RSOP equalization in the time domain by exploiting a sliding window structure. Both the CD compensation and the RSOP equalization are conducted in Stokes space when the proposed method is utilized, which is specially designed for an SV-DD system. The presented approach was checked using a 28 Gbaud 16-QAM SV-DD system simulation platform. The simulation results confirm that the method is very effective and has strong tolerance to CD (more than 2550 ps/nm, equivalent to a 150 km G. 652 fiber) combined with ultra-fast RSOP (up to 2 Mrad/s) for application in extreme polarization environments, like the transient lightning in a rainy day.

16.
Opt Express ; 26(16): 21170-21183, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119421

RESUMO

In this paper, we highlight that it is inadequate to describe the rotation of the state of polarization (RSOP) in a fiber channel with the 2-parameter description model, which was mostly used in the literature. This inadequate model may result in problems in polarization demultiplexing (PolDemux) because the RSOP in a fiber channel is actually a 3-parameter issue that will influence the state of polarization (SOP) of the optical signal propagating in the fiber and is different from the 2-parameter SOP itself. Considering three examples of the 2-parameter RSOP models typically used in the literature, we provide an in-depth analysis of the reasons why the 2-parameter RSOP model cannot represent the RSOP in the fiber channel and the problems that arise for PolDemux in the coherent optical receiver. We present a 3-parameter solution for the RSOP in the fiber channel. Based on this solution, we propose a DSP tracking and equalization scheme for the fast time-varying RSOP using the extended Kalman filter (EKF). The proposed scheme is proved to be universal and can solve all the PolDemux problems based on the 2- or 3-parameter RSOP model and exhibits good performance in the time-varying RSOP scenarios.

17.
Opt Express ; 26(6): 7211-7226, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609407

RESUMO

A window-split frequency domain Kalman scheme is proposed in this paper for the equalization of large polarization mode dispersion (PMD) and ultra-fast rotation of state-of-polarization (RSOP) which is an extreme environment due to the Kerr effect and the Faraday effect under the lightning strike near the fiber cables. In order to carry out the proposed Kalman scheme, we give a simplified and equivalent fiber channel model as a replacement for the general model of the polarization effect of the co-existence of PMD and RSOP. With this fiber channel model, we can conduct compensation for PMD in the frequency domain and tracking RSOP in time domain. A half analytical and half empirical theory for the initialization of the process and measurement noise covariance is also presented in theory and verified by the numerical simulation. The performance of the proposed Kalman scheme is checked in the 28Gbaud PDM-QPSK coherent system built on both simulation and experiment platforms. The simulation and experiment results confirm that compared with the generally used constant modulus algorithm (CMA), the proposed scheme provides excellent performance and stability to cope with large range DGD from 20ps to 200ps and RSOP from 200krad/s to 2Mrad/s, with less computational complexity.

18.
Opt Express ; 24(22): 25491-25501, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828487

RESUMO

We propose a joint multi-polarization-effect tracking and equalization method based on two extended Kalman filters, which can cope with state of polarization (SOP) tracing, polarization demultiplexing, equalization for polarization dependent loss (PDL) and polarization mode dispersion (PMD) in PDM-M-QAM coherent optical communication system. The mathematical model of the proposed method is given and analyzed in detail. Through simulation, the proposed method is proved to be very effective in a 28 Gbaud/s PDM-16QAM system. With the proposed method, SOP tracing speed is up to 110 Mrad/s for azimuth angle and 1200 krad/s for phase angle, respectively, and PDL and PMD can be equalized simultaneously in the values of 10 dB and more than half of the symbol period.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa