Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
BMC Microbiol ; 24(1): 232, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951807

RESUMO

BACKGROUND: Migratory birds exhibit heterogeneity in foraging strategies during wintering to cope with environmental and migratory pressures, and gut bacteria respond to changes in host diet. However, less is known about the dynamics of diet and gut fungi during the wintering period in black-necked cranes (Grus nigricollis). RESULTS: In this work, we performed amplicon sequencing of the trnL-P6 loop and ITS1 regions to characterize the dietary composition and gut fungal composition of black-necked cranes during wintering. Results indicated that during the wintering period, the plant-based diet of black-necked cranes mainly consisted of families Poaceae, Solanaceae, and Polygonaceae. Among them, the abundance of Solanaceae, Polygonaceae, Fabaceae, and Caryophyllaceae was significantly higher in the late wintering period, which also led to a more even consumption of various food types by black-necked cranes during this period. The diversity of gut fungal communities and the abundance of core fungi were more conserved during the wintering period, primarily dominated by Ascomycota and Basidiomycota. LEfSe analysis (P < 0.05, LDA > 2) found that Pyxidiophora, Pseudopeziza, Sporormiella, Geotrichum, and Papiliotrema were significantly enriched in early winter, Ramularia and Dendryphion were significantly enriched in mid-winter, Barnettozyma was significantly abundant in late winter, and Pleuroascus was significantly abundant in late winter. Finally, mantel test revealed a significant correlation between winter diet and gut fungal. CONCLUSIONS: This study revealed the dynamic changes in the food composition and gut fungal community of black-necked cranes during wintering in Dashanbao. In the late wintering period, their response to environmental and migratory pressures was to broaden their diet, increase the intake of non-preferred foods, and promote a more balanced consumption ratio of various foods. Balanced food composition played an important role in stabilizing the structure of the gut fungal community. While gut fungal effectively enhanced the host's food utilization rate, they may also faced potential risks of introducing pathogenic fungi. Additionally, we recongnized the limitations of fecal testing in studying the composition of animal gut fungal, as it cannot effectively distinguished between fungal taxa from food or soil inadvertently ingested and intestines. Future research on functions such as cultivation and metagenomics may further elucidate the role of fungi in the gut ecosystem.


Assuntos
Aves , Dieta , Fungos , Microbioma Gastrointestinal , Estações do Ano , Animais , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Aves/microbiologia , Trato Gastrointestinal/microbiologia , DNA Fúngico/genética , Filogenia
2.
J Evol Biol ; 37(4): 361-370, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306448

RESUMO

Whether the heat and cold tolerance of endotherms evolve independently or correlatively remains unresolved. Both physiological trade-offs and natural selection can contribute to a coevolutionary pattern of heat and cold tolerance in endotherms. Using a published database, we tested the correlation between upper and lower thermal limits across endothermic species with multi-response generalized linear mixed models incorporating phylogenies. We found a positive correlation between upper and lower thermal limits, which suggested a coevolutionary pattern of heat and cold tolerance. Specifically, this relationship between heat and cold tolerance is phylogenetically constrained for tropical endotherms but not for temperate endotherms. The correlated evolution between heat and cold tolerance may have a significant influence on endotherms' evolution and ecology and needs to be further investigated.


Assuntos
Ecologia , Temperatura Alta , Filogenia , Temperatura Baixa
3.
Environ Res ; 245: 118090, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163545

RESUMO

The giant panda, a strict herbivore that feeds on bamboo, still retains a typical carnivorous digestive system. Reference catalogs of microbial genes and genomes are lacking, largely limiting the antibiotic resistome and functional exploration of the giant panda gut microbiome. Here, we integrated 177 fecal metagenomes of captive and wild giant pandas to construct a giant panda integrated gene catalog (GPIGC) comprised of approximately 4.5 million non-redundant genes and reconstruct 393 metagenome-assembled genomes (MAGs). Taxonomic and functional characterization of genes revealed that the captivity of the giant panda significantly changed the core microbial composition and the distribution of microbial genes. Higher abundance and prevalence of antibiotic resistance genes (ARGs) were detected in the guts of captive giant pandas, and ARG distribution was influenced by geography, for both captive and wild individuals. Escherichia, as the prevalent genus in the guts of captive giant pandas, was the main carrier of ARGs, meaning there is a high risk of ARG transmission by Escherichia. We also found that multiple mcr gene variants, conferring plasmid-mediated mobile colistin resistance, were widespread in the guts of captive and wild giant pandas. There were low proportions of carbohydrate-active enzyme (CAZyme) genes in GPIGC and MAGs compared with several omnivorous and herbivorous mammals. Many members of Clostridium MAGs were significantly enriched in the guts of adult, old and wild giant pandas. The genomes of isolates and MAGs of Clostridiaceae harbored key genes or enzymes in complete pathways for degrading lignocellulose and producing short-chain fatty acids (SCFAs), indicating the potential of these bacteria to utilize the low-nutrient bamboo diet. Overall, our data presented an exhaustive reference gene catalog and MAGs in giant panda gut and provided a comprehensive understanding of the antibiotic resistome and microbial adaptability for a high-lignocellulose diet.


Assuntos
Microbioma Gastrointestinal , Lignina , Ursidae , Humanos , Animais , Metagenoma , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia , Dieta/veterinária
4.
Opt Express ; 31(20): 33132-33140, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859100

RESUMO

The efficiency of energy coupled to plasma during femtosecond (fs) laser filamentation plays a decisive role in a variety of filament applications such as remote fabrication and spectroscopy. However, the energy deposition characterization in the fs laser filament formed by a telescope, which provides an efficient way to extend the filament distance, has not yet been revealed. In the present study, we show that when the distance between the two lenses in a telescope changes, i.e., the effective focal length changes, there exists an optimal plateau energy deposition region in which the energy deposited into the filament per unit length called the average lineic energy deposition (ALED) remains at high levels, exhibiting a remarkable difference from the monotonic change in a single-lens focusing system. As a proof of principle, we examined the influence of the energy deposition on the ignition of a lean methane/air mixture, and found that the use of the telescope can efficiently extend the ignition distance when compared with a single-lens focusing system under the same incident laser energy condition. Our results may help understand the energy deposition behaviors in a variety of telescopic filaments and provide more options to manipulating laser ignition at a desired distance.

5.
Opt Lett ; 48(16): 4308-4311, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582019

RESUMO

Coherent Raman spectroscopy (CRS) with air-laser-based hybrid femtosecond/picosecond (fs/ps) pulses has shown promising potential for remote detection and surveillance of atmospheric species with high temporal and frequency resolution. Here, to enhance the sensitivity and extend the detection distance, we generate the CRS spectra of air molecules in situ in a filamentary plasma grating, and show that the grating can efficiently enhance the intensities of the coherent vibrational Raman lines of N2, O2, and N2 + by 2-3 orders of magnitude at an extended distance. By examining the intensities of the Raman lines, fs-pulsed supercontinuum, and ps-pulsed air laser produced under different grating conditions, we reveal that the optimization of the Raman lines is achieved by the dynamic balance between the supercontinuum-induced vibrational coherence and air-laser-induced polarization of the air species.

6.
Opt Lett ; 48(3): 526-529, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723522

RESUMO

Air lasing induced by laser filamentation opens a new route for research on atmospheric molecular physics and remote sensing. The generation of air lasing is composed of two processes, i.e., building up optical gain of air molecules in femtosecond time scale and emitting coherent radiation in picosecond time scale. Here, we focus on the emission mechanisms of N2 + air lasing and reveal, by examining the intensities and temporal profiles of N2 + lasing at 391 nm generated respectively in a time-varying polarization-modulated and a linearly polarized pump laser field under different nitrogen gas pressures, that the N2 + lasing can emit through either triggered super-radiance or seed amplification. We find that the two pressure-sensitive factors, i.e., the dipole dephasing time T2 and the population inversion density n, determine which of these two mechanisms dominates the N2 + lasing emission process, enabling manipulation of the transition from triggered super-radiance to seed amplification or vice versa. Our findings clarify the emission mechanism of N2 + lasing under different pressures and provide a deeper understanding of N2 + air lasing not only in the establishment of optical gain but also in the lasing emission process.

7.
Appl Microbiol Biotechnol ; 107(14): 4635-4646, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37249588

RESUMO

Less is known about the role of gut microbiota in overwintering environmental adaptation in migratory birds. Here, we performed metagenomic sequencing on fresh fecal samples (n = 24) collected during 4 periods of overwintering (Dec: early; Jan: middle I; Feb: middle II; Mar: late) to characterize gut microbial taxonomic and functional characteristics of black-necked crane (Grus nigricollis). The results demonstrated no significant change in microbial diversity among overwintering periods. Analysis of compositions of microbiomes with bias correction (ANCOM-BC) determined 15 Proteobacteria species enriched in late overwintering period. Based on previous reports, these species are associated with degradation of chitin, cellulose, and lipids. Meanwhile, fatty acid degradation and betalain biosynthesis pathways are enriched in late overwintering period. Furthermore, metagenomic binning obtained 91 high-quality bins (completeness >70% and contamination <10%), 5 of which enriched in late overwintering period. Carnobacterium maltaromaticum, unknown Enterobacteriaceae, and Yersinia frederiksenii have genes for chitin and cellulose degradation, acetate, and glutamate production. Unknown Enterobacteriaceae and Y. frederiksenii hold genes for synthesis of 10 essential amino acids required by birds, and the latter has genes for γ-aminobutyrate production. C. maltaromaticum has genes for pyridoxal synthesis. These results implied the gut microbiota is adapted to the host diet and may help black-necked cranes in pre-migratory energy accumulation by degrading the complex polysaccharide in their diet, supplying essential amino acids and vitamin pyridoxal, and producing acetate, glutamate, and γ-aminobutyrate that could stimulate host feeding. Additionally, enriched Proteobacteria also encoded more carbohydrate-active enzymes (CAZymes) and antibiotic resistance genes (ARGs) in late overwintering period. KEY POINTS: • Differences in gut microbiota function during overwintering period of black-necked cranes depend mainly on changes in core microbiota abundance • Gut microbiota of black-necked crane adapted to the diet during overwintering period • Gut microbiota could help black-necked cranes to accumulate more energy in the late overwintering period.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Proteobactérias , Aves/genética , Aves/microbiologia , Celulose
8.
Nano Lett ; 22(5): 2023-2029, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35200029

RESUMO

Whispering gallery modes in a microwire are characterized by a nearly equidistant energy spectrum. In the strong exciton-photon coupling regime, this system represents a bosonic cascade: a ladder of discrete energy levels that sustains stimulated transitions between neighboring steps. Here, by using a femtosecond angle-resolved spectroscopic imaging technique, the ultrafast dynamics of polaritons in a bosonic cascade based on a one-dimensional ZnO whispering gallery microcavity are explicitly visualized. Clear ladder-form build-up processes from higher to lower energy branches of the polariton condensates are observed, which are well reproduced by modeling using rate equations. Remarkably, a pronounced superbunching feature, which could serve as solid evidence for bosonic cascades, is demonstrated by the measured second-order time correlation factor. In addition, the nonlinear polariton parametric scattering dynamics on a time scale of hundreds of femtoseconds are revealed. Our understandings pave the way toward ultrafast coherent control of polaritons at room temperature.

9.
Opt Express ; 30(15): 26182-26191, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236813

RESUMO

Soot nanoparticles result from incomplete combustion of fossil fuels, and have been exhibited, when released into the atmosphere, to be detrimental to air quality and human health. However, because of the inert and non-luminescent properties, probing the dynamics of soot in situ is still a challenge. Here we report a strong near-infrared laser pump and multi-color Rayleigh scattering probe approach to reveal soot dynamics in situ in a n-pentanol/air laminar diffusion flame at femtosecond time resolution. A size-dependent dynamical process of the pump-laser-induced soot swelling at femtosecond time scale and subsequent shrinking back to its original size at picosecond time scale is observed, in which both the swelling rise time and the shrinking decay time increase monotonically as the initial sizes of soot nanoparticles become larger. By characterizing the evolution time and intensity of the multi-color scattered probe light, the spatial distributions of different sizes of soot particles from the inception to the burnout regions of the flame are mapped, which provide useful information on exploring the formation and growth mechanisms of soot particles in flames.

10.
Phys Rev Lett ; 129(5): 057402, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960578

RESUMO

Exciton polaritons have shown great potential for applications such as low-threshold lasing, quantum simulation, and dissipation-free circuits. In this paper, we realize a room temperature ultrafast polaritonic switch where the Bose-Einstein condensate population can be depleted at the hundred femtosecond timescale with high extinction ratios. This is achieved by applying an ultrashort optical control pulse, inducing parametric scattering within the photon part of the polariton condensate via a four-wave mixing process. Using a femtosecond angle-resolved spectroscopic imaging technique, the erasure and revival of the polariton condensates can be visualized. The condensate depletion and revival are well modeled by an open-dissipative Gross-Pitaevskii equation including parametric scattering process. This pushes the speed frontier of all-optical controlled polaritonic switches at room temperature towards the THz regime.

11.
Sensors (Basel) ; 22(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36433371

RESUMO

Femtosecond filament-induced breakdown spectroscopy (FIBS) is an efficient approach in remote and in situ detection of a variety of trace elements, but it was recently discovered that the FIBS of water is strongly dependent on the large-bandgap semiconductor property of water, making the FIBS signals sensitive to laser ionization mechanisms. Here, we show that the sensitivity of the FIBS technique in monitoring metal elements in water can be efficiently improved by using chirped femtosecond laser pulses, but an asymmetric enhancement of the FIBS intensity is observed for the negatively and positively chirped pulses. We attribute the asymmetric enhancement to their different ionization rates of water, in which the energy of the photons participating in the ionization process in the front part of the negatively chirped pulse is higher than that in the positively chirped pulse. By optimizing the pulse chirp, we show that the limit of detection of the FIBS technique for metal elements in water, e.g., aluminum, can reach to the sub-ppm level, which is about one order of magnitude better than that by the transform-limited pulse. We further examine the FIBS spectra of several representative water samples including commercial mineral water, tap water, and lake water taken from two different environmental zones, i.e., a national park and a downtown business district (Changchun, China), from which remarkably different concentrations of Ca, Na, and K elements of these samples are obtained. Our results provide a possibility of using FIBS for direct and fast metal elemental analysis of water in different field environments.


Assuntos
Oligoelementos , Água , Lasers , Análise Espectral , Semicondutores
12.
Opt Lett ; 46(14): 3404-3407, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264224

RESUMO

Cavity-free air lasing offers a promising route towards the realization of atmospheric lasers for various applications such as remote sensing and standoff spectroscopy; however, achieving efficient generation and control of air lasing in ambient air is still a challenge. Here we show the experimental realization of a giant lasing enhancement by three to four orders of magnitude in ambient air for the self-seeded N2+ lasing at 428 nm, assigned to the B2Σu+(ν'=0) and X2Σg+(ν''=1) emission, by modulating the spatiotemporal overlap of ultrashort near-infrared control-pump pulses in a filamentary plasma grating; meanwhile, the spontaneous emission from the same transition is only enhanced by three to four times. We find that this enhancement is sensitive to the relative polarization and interference time of the two pulses, and reveal that the formation of the plasma grating induces different population variations in the B2Σu+(ν'=0) and X2Σg+(ν''=1) levels, resulting in an enormous population inversion between the two levels, thereby a higher gain for the giant enhancement of N2+ lasing in ambient air.

13.
Arch Microbiol ; 203(10): 6203-6214, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34561717

RESUMO

During overwintering of black-necked cranes (Grus nigricollis), the composition and function of the gut microbiota changes are of considerable interest for understanding its environmental adaption mechanism. In this study, we characterized the structure of the gut microbiota from the black-necked crane in the Dashanbao wintering area, and compared the early-winter (November) microbiota to the late-winter (March of the next year) microbiota. The results showed that the gut microbiota diversity of black-necked crane in the early-overwintering stage was higher than that in the late-overwintering stage, but it did not reach a significant level. Gut microbiota taxonomic composition analysis showed that relative abundance of Bacteroidota increased significantly, and showed decreased Firmicutes to Bacteroidota ratio at the phylum level, meanwhile, the abundance of Lactobacillus decreased significantly at the genus level. Explain gut microbiota between the early- and late-wintering showed some differences in microbiota richness but maintained a relatively conservative microbiota structure. PICRUSt2 method was used to predict and analyze the KEGG functional abundance of 16S rDNA sequences of bacteria, it was found that the changes in gut microbiota composition increased the abundance of bacteria associated with amino acid biosynthesis and acid metabolism in the late stage of overwintering. This work provides basic data for black-necked crane gut microbiota study, which might further contribute to their protection.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Aves , RNA Ribossômico 16S/genética , Estações do Ano
14.
BMC Microbiol ; 20(1): 68, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216756

RESUMO

BACKGROUND: The mammal intestinal microbiota is involved in various physiological processes and plays a key role in host environment adaption. However, for non-human primates (NHPs), little is known about their gut microbial community in high-altitude environments and even less about their adaption to such habitats. We characterised the gut microbial community of rhesus macaques from multiple high-altitude environments and compared it to those of low-altitude populations. RESULTS: We collected faecal samples of rhesus macaques from four high-altitude populations (above 3000 m) and three low-altitude populations (below 500 m). By calculating the alpha diversity index, we found that high-altitude populations exhibited a higher diversity. Statistical analysis of beta diversity indicated significant differences between high- and low-altitude populations. Significant differences were also detected at the phylum and family levels. At the phylum level, the high-altitude gut microbial community was dominated by Firmicutes (63.42%), while at low altitudes, it was dominated by Bacteroidetes (47.4%). At the family level, the high-altitude population was dominated by Ruminococcaceae (36.2%), while the low-altitude one was dominated by Prevotellaceae (39.6%). Some families, such as Christensenellaceae and Rikenellaceae, were consistently higher abundant in all high-altitude populations. We analysed the overlap of operational taxonomic units (OTUs) in high-altitude populations and determined their core OTUs (shared by all four high-altitude populations). However, when compared with the low-altitude core OTUs, only 65% were shared, suggesting a divergence in core OTUs. Function prediction indicated a significant difference in gene copy number of 35 level-2 pathways between high- and low-altitude populations; 29 of them were higher in high altitudes, especially in membrane transport and carbohydrate metabolism. CONCLUSIONS: The gut microbial community of high-altitude rhesus macaques was significantly distinct from that of low-altitude populations in terms of diversity, composition and function. High-altitude populations were dominated by Firmicutes and Ruminococcace, while in low-altitude populations, Bacteroidetes and Prevotellaceae were dominant. The difference in gut microbiota between these two populations may be caused by differences in host diet, environmental temperature and oxygen pressure. These differentiated gut microbial microorganisms may play a critical role in the adaptive evolution of rhesus macaques to high-altitude environments.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Macaca mulatta/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Altitude , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Fezes/microbiologia , Microbioma Gastrointestinal , Dosagem de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
15.
Opt Express ; 28(16): 23274-23283, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752326

RESUMO

We experimentally demonstrate an asymmetric enhancement of the N2+ lasing at 391 nm for the transition between the B2Σu+ (v = 0) and X2Σg+ (v" = 0) states in an intense laser field with the ellipticity, ε, modulated by a 7-order quarter-wave plate (7-QWP). It is found that when the 7-QWP is rotated from α = 0 to 90°, where α is the angle between the polarization direction of the input laser and the slow axis of the 7-QWP, the intensity of the 391-nm lasing is optimized at ε ∼ 0.3 with α∼ 10°-20° and 70°-80° respectively, but the optimization intensity at α∼ 10°-20° is about 4 times smaller than that at α∼ 70°-80°. We interpret the asymmetric enhancement based on a post-ionization coupling model, in which the birefringence of the 7-QWP induces an opposite change in the relative amplitudes of the ordinary (Eo) and extraordinary (Ee) electric components under the two conditions, so that the same temporal separation of Eo and Ee leads to a remarkably different coupling strength for the population transfer from the X2Σg+ (v "=0) to A2Πu (v '=2) states.

16.
Opt Lett ; 45(24): 6591-6594, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325847

RESUMO

Optical ionization of N2 and subsequent population redistribution among the ground and excited states of N2+ in an intense laser field are commonly accepted to be fundamentally responsible for the generation of N2+ lasing. By finely controlling this two-step process, the optimization of N2+ lasing is possibly achieved. Here, we design a waveform-controlled polarization-skewed (PS) pumping pulse, in which the leading and falling edges are orthogonally polarized, and their relative field strength and phase can be well controlled. We demonstrate that precise manipulation of the N2+ lasing at 391 nm and 428 nm emissions can be achieved by modulating both the relative phase and amplitudes of the two orthogonally polarized components of the pumping PS pulse. We find that the optimization of N2+ lasing depends not only on the competitive balance between the ionization and post-ionization coupling that varies in different pumping energies but also on the phase with the maximum intensity appearing at the phase of nπ. Orders of magnitude enhancement in the N2+ lasing intensity is observed as the phase changes from (n+1/2)π to nπ. The PS pulse with a controllable spatiotemporal waveform provides us a robust and straightforward tool to efficiently enhance the N2+ lasing emission.

17.
Phys Rev Lett ; 125(5): 053201, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794853

RESUMO

A fine manipulation of population transfer among molecular quantum levels is a key technology for control of molecular processes. When a light field intensity is increased to the TW-PW cm^{-2} level, it becomes possible to transfer a population to specific excited levels through nonlinear light-molecule interaction, but it has been a challenge to control the extent of the population transfer. We deplete the population in the X^{2}Σ_{g}^{+}(v=0) state of N_{2}^{+} almost completely by focusing a dual-color (800 nm and 1.6 µm) intense femtosecond laser pulse in a nitrogen gas, and make the intensity of N_{2}^{+} lasing at 391 nm enhanced by 5-6 orders of magnitude. By solving a time-dependent Schrödinger equation describing the population transfer among the three lowest electronic states of N_{2}^{+}, we reveal that the X^{2}Σ_{g}^{+}(v=0) population is depleted by the vibrational Raman excitation followed by the electronic excitation A^{2}Π_{u}(v=2,3,4)←X^{2}Σ_{g}^{+}(v=1)←X^{2}Σ_{g}^{+}(v=0), resulting in the excessive population inversion between the B^{2}Σ_{u}^{+}(v=0) and X^{2}Σ_{g}^{+}(v=0) states. Our results offer a promising route to efficient population transfer among vibrational and electronic levels of molecules by a precisely designed intense laser field.

18.
Nanotechnology ; 31(20): 205710, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32018236

RESUMO

When used as a current collector, aluminum foil (AF) is vulnerable to local anodic corrosion during the charge/discharge process, which can lead to the deterioration of lithium-ion batteries (LIBs). Herein, a graphene foil (GF) with high electrical conductivity (∼5800 S cm-1) and low mass density (1.80 g cm-3) was prepared by reduction of graphene oxide foil with ultra-high temperature (2800 °C) annealing, and it exhibited significantly anodic corrosion resistance when serving as a current collector. Moreover, a LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode using GF as a current collector (NCM523/GF) demonstrated a gravimetric capacity of 137.3 mAh g-1 at 0.5 C based on the mass of the whole electrode consisting of the active material, carbon black, binder, and the current collector, which is 44.5% higher than that of the NCM523/AF electrode. Furthermore, the NCM523/GF electrode retains higher capacity at relatively faster rates, from 0.1 C to 5.0 C. Therefore, GF, a lightweight corrosion-resistant current collector, is expected to replace the current commercial metal current collectors in LIBs and to achieve high energy-density batteries.

19.
Curr Microbiol ; 77(10): 2623-2632, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32440808

RESUMO

Gastrointestinal microbiome plays an important role in animal metabolism, immune system and pathology associated with health and disease. Many wild slow lorises were confiscated from illegal trade into captivities and experienced a range of changes in living environment and diet. Microbiome analysis contributes to improving captive management by identifying the alteration in their gastrointestinal microbial communities and aiding in determining the factors affecting the health of captive slow lorises. The fecal samples of eighteen Bengal slow lorises (Nycticebus bengalensis) were used to compare gut microbiota from four rescue centers located in Dehong, Gejiu, Nanning and Puer cities of China. The results showed a significant site-dependent difference in microbial community diversity. Similar to other Lorisinae species, the Phyla including Bacteroidetes, Firmicutes and Proteobacteria dominated their gut microbiome composition. The Gejiu group exhibited a higher overall diversity and the unique OTUs, which is resulted from long-term isolated husbandry and heavy human disturbances. The scarcity of gums in the captive diet was likely to cause a lower abundance of Prevotella associated with soluble fiber degradation. The variation of intestinal microbiota in different environments highlights the necessity to improve feed preparation and husbandry management for the captive Bengal slow lorises.


Assuntos
Microbioma Gastrointestinal , Lorisidae , Animais , China , Firmicutes/genética , Humanos , Proteobactérias/genética , RNA Ribossômico 16S/genética
20.
Folia Primatol (Basel) ; 91(3): 188-201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31665731

RESUMO

The ecological constraints model is well supported by data from most frugivorous primates; however, the prediction power of the model is weak for folivorous primates. From September 2016 to August 2017, we collected comparative data on time budgets, daily path lengths and diets of four groups of white-headed langurs (Trachypithecus leucocephalus), including two large groups (G-DS and G-ZWY) and two small groups (G-LZ and G-NN) in Chongzuo White-Headed Langur National Nature Reserve, Guangxi Province, Southwest China. The aim was to obtain evidence of foraging competition and to test the ecological constraints model on this highly folivorous primate in its karst habitat. The results showed that langurs in the larger groups spent more time traveling, less time resting, and had a longer average daily path length than those in the small groups. Diet composition and dietary diversity were not significantly different between the large and small groups. Our study demonstrates that langurs from large groups suffer scramble competition in limestone forests and supports the validity of the ecological constraints model for folivores.


Assuntos
Comportamento Animal , Colobinae/fisiologia , Dieta , Comportamento Social , Animais , Comportamento Apetitivo , China , Comportamento Competitivo , Preferências Alimentares , Florestas , Locomoção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa