Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975729

RESUMO

Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.

2.
Anal Chem ; 96(13): 5160-5169, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470972

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which is a label-free imaging technique, determines the spatial distribution and relative abundance of versatile endogenous metabolites in tissues. Meanwhile, matrix selection is generally regarded as a pivotal step in MALDI tissue imaging. This study presents the first report of a novel MALDI matrix, 2-hydroxy-5-nitro-3-(trifluoromethyl)pyridine (HNTP), for the in situ detection and imaging of endogenous metabolites in rat liver and brain tissues by MALDI-MS in positive-ion mode. The HNTP matrix exhibits excellent characteristics, including strong ultraviolet absorption, µm-scale matrix crystals, high chemical stability, low background ion interference, and high metabolite ionization efficiency. Notably, the HNTP matrix also shows superior detection capabilities, successfully showing 185 detectable metabolites in rat liver tissue sections. This outperforms the commonly used matrices of 2,5-dihydroxybenzoic acid and 2-mercaptobenzothiazole, which detect 145 and 120 metabolites from the rat liver, respectively. Furthermore, a total of 152 metabolites are effectively detected and imaged in rat brain tissue using the HNTP matrix, and the spatial distribution of these compounds clearly shows the heterogeneity of the rat brain. The results demonstrate that HNTP is a new and powerful positive-ion mode matrix to enhance the analysis of metabolites in biological tissues by MALDI-MSI.


Assuntos
Diagnóstico por Imagem , Fígado , Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fígado/metabolismo , Piridinas/análise
3.
Anal Chem ; 95(51): 18709-18718, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38018128

RESUMO

Amino acids (AAs), which are low-molecular-weight (low-MW) metabolites, serve as essential building blocks not only for protein synthesis but also for maintaining the nitrogen balance in living systems. In situ detection and imaging of AAs are crucial for understanding more complex biological processes. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a label-free mass spectrometric imaging technique that enables the simultaneous detection and imaging of the spatial distribution and relative abundance of different endogenous/exogenous compounds in biological samples. The excellent efficiency of MALDI-MSI is attributed to the choice of the MALDI matrix. However, to the best of our knowledge, no matrix has been specifically developed for AAs. Herein, we report a MALDI matrix, 2,5-dihydroxyterephthalic acid (DHT), which can improve the detection and imaging of AAs in biological samples by MALDI-MS. Our results indicated that DHT exhibited strong ultraviolet-visible (UV-vis) absorption, uniform matrix deposition, and high vacuum stability. Moreover, the matrix-related ion signals produced from DHT were reduced by 50 and 71.8% at m/z < 500 compared to the commonly used matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA), respectively, in their respective organic solvents. In terms of quantitative performance, arginine, glutamic acid, glutamine, and proline can be detected with limits of detection of 6, 4, 6, and 4 ng/mL, respectively, using the DHT as the matrix. Using DHT as the matrix, all 20 protein AAs were successfully detected in human serum by MALDI-MS, whereas only 7 and 10 AAs were detected when DHB and CHCA matrices were used, respectively. Furthermore, 20 protein AAs and taurine were successfully detected and imaged in a section of edible Crassostrea gigas (oyster) tissue for the first time. Our study demonstrates that using DHT as a matrix can improve the detection and imaging of AAs in biological samples by MALDI-MS.


Assuntos
Aminoácidos , Diagnóstico por Imagem , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ácido Glutâmico
4.
Plant Biotechnol J ; 21(12): 2574-2584, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37561662

RESUMO

A novel metabolomics analysis technique, termed matrix-assisted laser desorption/ionization mass spectrometry imaging-based plant tissue microarray (MALDI-MSI-PTMA), was successfully developed for high-throughput metabolite detection and imaging from plant tissues. This technique completely overcomes the disadvantage that metabolites cannot be accessible on an intact plant tissue due to the limitations of the special structures of plant cells (e.g. epicuticular wax, cuticle and cell wall) through homogenization of plant tissues, preparation of PTMA moulds and matrix spraying of PTMA sections. Our study shows several properties of MALDI-MSI-PTMA, including no need of sample separation and enrichment, high-throughput metabolite detection and imaging (>1000 samples per day), high-stability mass spectrometry data acquisition and imaging reconstruction and high reproducibility of data. This novel technique was successfully used to quickly evaluate the effects of two plant growth regulator treatments (i.e. 6-benzylaminopurine and N-phenyl-N'-1,2,3-thiadiazol-5-ylurea) on endogenous metabolite expression in plant tissue culture specimens of Dracocephalum rupestre Hance (D. rupestre). Intra-day and inter-day evaluations indicated that the metabolite data detected on PTMA sections had good reproducibility and stability. A total of 312 metabolite ion signals in leaves tissues of D. rupestre were detected, of which 228 metabolite ion signals were identified, they were composed of 122 primary metabolites, 90 secondary metabolites and 16 identified metabolites of unknown classification. The results demonstrated the advantages of MALDI-MSI-PTMA technique for enhancing the overall detection ability of metabolites in plant tissues, indicating that MALDI-MSI-PTMA has the potential to become a powerful routine practice for high-throughput metabolite study in plant science.


Assuntos
Metabolômica , Plantas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Reprodutibilidade dos Testes , Plantas/metabolismo , Metabolômica/métodos
5.
Analyst ; 148(4): 823-831, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637134

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a powerful approach that has been widely used for in situ detection of various endogenous compounds in tissues. However, there are still challenges with in situ analysis of proteins using MALDI-MSI due to the ion suppression effects of small molecules in tissue sections. Therefore, tissue-washing steps are crucial for protein MALDI tissue imaging to remove these interfering molecules. Here, we successfully developed a new method named the concentration-descending washing strategy (CDWS) with methanol (MeOH), i.e., washing of biological tissue with 100%, 95%, and 70% MeOH solutions, for the enhancement of endogenous in situ protein detection and imaging in tissues using MALDI-MS. The method of MeOH-based CDWS (MeOH-CDWS) led to the successful in situ detection of 272 ± 3, 185 ± 4, and 134 ± 2 protein ion signals from rat liver, rat brain, and germinating Chinese-yew seed tissue sections, respectively. By comparison, 161 ± 2, 121 ± 1, and 114 ± 2 protein ions were detected by three commonly used methods, i.e., Carnoy's wash, ethanol (EtOH)-based CAWS (i.e., concentration-ascending washing strategy, 70% EtOH followed by 90% EtOH/9% AcOH), and isopropanol (iPrOH)-based CAWS (70% iPrOH followed by 95% iPrOH), respectively, in rat liver tissue sections, indicating that 68.9 ± 3.1%, 124.8 ± 3.3%, and 138.6 ± 4.4% more protein ion signals could be detected by the use of MeOH-CDWS than the three abovementioned washing strategies. Our results show that the use of MeOH-CDWS improves the performance of MALDI-MSI for in situ protein detection such as the number and intensity of proteins. The use of MeOH-CDWS improves the fixation of proteins and thus reduces the loss of proteins, which significantly reduces protein delocalization in tissue and enhances the performance of MALDI tissue imaging of protein. Thus, the use of MeOH-CDWS improves the quality of protein images in tissue sections through MALDI-MSI and has the potential to be used as standard practice for MALDI tissue imaging of proteins.


Assuntos
Metanol , Proteínas , Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Diagnóstico por Imagem , Sementes
6.
Anal Chem ; 89(7): 4177-4183, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28252284

RESUMO

Previously, a continuous atmospheric pressure interfaced miniature mass spectrometer was developed in our lab. The continuous atmospheric pressure interface improves system robustness, stability, and scan speed, but it also results in limited ion transfer efficiency and reduced mass resolution. To solve these problems, a miniature ion funnel was designed and integrated into the miniature mass spectrometer for the first time. Besides ion transfer efficiency, dimension and power consumption of the ion funnel also need to be considered throughout the design process. After a systematic optimization, the designed miniature ion funnel could increase ion transfer efficiency by more than 10 times, while lowering the background pressure of ion trap by ∼2 times. As a result, sensitivity and mass resolution of the second generation miniature mass spectrometer were improved by 20 times and ∼2 times, respectively, while maintaining its high scan speed and stability. A sensitive and robust mini-MS, capable of coupling with ambient ionization sources would meet the needs of many on-site chemical analysis applications, such as in food, drug, and agricultural administrations, forensic science, homeland security, and etc.

7.
Anal Chem ; 89(10): 5578-5584, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28452479

RESUMO

In this work, a "brick" size miniature mass spectrometer (28 cm × 21 cm × 16 cm) was developed and characterized, which was enabled by the development of a new frequency scanning technique. Different from the conventional voltage scanning method or the digital waveforms used on a digital ion trap, a sinusoidal frequency scanning technique was developed to drive the linear ion trap of the brick mass spectrometer (BMS). Both an in-vacuum plasma ionization source and an electrospray ionization source were coupled with this BMS for the analyses of volatile and nonvolatile samples. Stability diagram, sensitivity, mass resolution, and mass range of the BMS were explored. This new frequency scanning technique could not only reduce the size and power consumption of a miniature mass spectrometer but also improve its analytical performances, especially in terms of mass range and resolution. Analogous to the development of cell phones, this BMS would be an important step from "brick" mass spectrometer to "cell" mass spectrometer.

8.
Rapid Commun Mass Spectrom ; 30(8): 1079-86, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27003045

RESUMO

RATIONALE: The ion funnel has proven to be an important ion transport device. It is used in mass spectrometry as a replacement for the ion transmission limited skimmer. However, conventional out-of-phase radiofrequency (RF) supply approaches inevitably produce potential barriers, decreasing transmission efficiency. A novel RF supply method is proposed that produces better transmission performance. METHODS: We designed an ion funnel driven by a phase-modulated rectangular wave (PMRW). The potential field distributions of the PMRW ion funnel and a conventional ion funnel were computer simulated to evaluate their focusing properties. A series of simulations were produced using the SIMION ion-optics simulation program to compare the transmission efficiency of the two types of funnel. Preliminary experimental results were obtained using an electrospray ionization mass spectrometry platform with polypropylene glycol, propylamine and butylamine samples. RESULTS: The electrical potential distribution of a PMRW ion funnel has a bowl shape at the cross section of the electrodes, rather than in the field-free region; this benefits focusing performance. A comparison of ion trajectories and flight time data produced by the SIMION simulations showed that the potential barrier did not exist in the PMRW mode. The experimental results showed that the PMRW method increased the signal intensity by 150-200% for propylamine and butylamine and 50% for polypropylene glycol. CONCLUSIONS: A novel PMRW ion funnel has been designed and developed. The simulation and experimental results indicate that the PMRW ion funnel has better transmission efficiency than the conventional ion funnel, particularly for low mass-to-charge ratio ions.

9.
Radiol Case Rep ; 19(5): 1851-1854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38425772

RESUMO

We presented a case of a 66-year-old female whose initial symptom was headache without obvious inducement. The patient's condition progressed rapidly to a semi-coma state after symptomatic treatment. The 18F-FDG PET/CT scan revealed circular FDG hypermetabolism and central metabolic defect of the pons and left frontal lobe lesions. The combination of clinical findings, MRI, and Metagenomic next-generation sequencing (NGS) of cerebrospinal fluid led to the diagnosis of Balamuthia mandrillaris encephalitis. The patient died 5 days after discharge.

10.
Polymers (Basel) ; 15(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765586

RESUMO

Temporary plugging diversion fracturing (TPDF) technology has been widely used in various oil fields for repeated reconstruction of high-water-cut old oil wells and horizontal well reservoir reconstruction. Previous studies have carried out in-depth study on the pressure-bearing law and placement morphology of different types of temporary plugging agents (TPAs) in fractures, but there are relatively few studies on TPA accumulation body permeability. To solve this problem, an experimental device for evaluating the TPA performance with adjustable fracture pores is proposed in this paper. Based on the test of fracturing fluid breaking time and residue content, the low damage of fracturing fluid to the reservoir is determined. The TPA degradation performance test determines whether the TPA causes damage to the hydraulic fracture after the temporary plugging fracturing. Finally, by testing the TPA pressure-bearing capacity and the temporary plugging aggregation body permeability, the plugging performance and the aggregation body permeability are determined. The results show the following: (1) Guar gum fracturing fluid shows good gel-breaking performance under the action of breaking agent, and the recommended concentration of breaking agent is 300 ppm. At 90~120 °C, the degradation rate of the three types of TPAs can reach more than 65%, and it can be effectively carried into the wellbore during the fracturing fluid flowback stage to achieve the effect of removing the TPA in the fracture. (2) The results of the pressure-bearing performance of the TPA show that the two kinds of TPAs can quickly achieve the plugging effect after plugging start: the effect of ZD-2 (poly lactic-co-glycolic acid (PLGA)) particle-and-powder combined TPA on forming an effective temporary plugging accumulation body in fractures is better than that of ZD-1 (PLGA) pure powder. There are large pores between the particles, and the fracturing fluid can still flow through the pores, so the ZD-3 (a mixture of lactide and PLGA) granular temporary plugging agent cannot form an effective plugging. (3) The law of length of the temporary plugging accumulation body shows that the ZD-2 combined TPA has stronger plugging ability for medium-aperture simulated fracture pores, while the ZD-1 powder TPA has stronger plugging ability for small aperture simulated fracture pores, and the ZD-3 granular TPA should be avoided alone as far as possible. This study further enriches and improves the understanding of the mechanism of temporary plugging diverting fracturing fluid.

11.
Int J Biol Macromol ; 253(Pt 4): 127047, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742895

RESUMO

Dry masks made of natural active ingredients that are packaged in sustainable paper and free of irritating additives (e.g. preservatives, stabilizers) are a trend in the concept of healthy skincare, which possess the advantages of portability, safety and environmental friendliness. The bioactive ingredients obtained from natural plant fermentation are gradually becoming an important alternative additive for facial skincare. Herein, a novel dry facial healthcare mask was fabricated by electrospinning incorporating natural ingredients including pullulan (Pu), sodium hyaluronate (SH), and Ganoderma lucidum fermentation (GLF). The morphology, dissolving capacity, bioactivity, and safety of the obtained masks were investigated in vitro, and their antioxidation and moisturizing activities were verified at the cellular level. The results indicated that the fibrillary films based on pullulan could be dissolved in water within 20 s with good water retention capacity and film with high concentration of GLF (Pu/SH/GLF-3) could scavenge 79 % of DPPH. The films had good ability to resist microbial contamination and non-eye irritation via observing colony growth for 12 months after ultraviolet sterilization and the ocular irritation test of chicken chorioallantoic membrane. Meanwhile, cell experiments further confirmed that they did not exhibit cytotoxicity and could increase the expression of proteins related to moisturizing and antioxidation. The fascinating films have promising application prospects in cosmetic masks. This work may enrich the use of natural materials in skincare products and provide a green development direction for the light chemical industry.


Assuntos
Nanofibras , Reishi , Ácido Hialurônico/farmacologia , Antioxidantes/farmacologia , Fermentação , Água
12.
Nutrients ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299437

RESUMO

Aging is closely related to many diseases and is a long-term challenge that humans face. The oxidative damage caused by the imbalance of free radicals is an important factor in aging. In this study, we investigate the antioxidant and antiaging activities of fermented coix seed polysaccharides (FCSPs) via in vitro and in vivo experiments. The FCSPs were extracted by fermenting coix seed with Saccharomyces cerevisiae for 48 h and utilizing water-extracted coix seed polysaccharides (WCSPs) as a control. Their antiaging activity and mechanism were evaluated based on the antiaging model organism Caenorhabditis elegans (C. elegans). The results showed that the molecular weight of the FCSPs extracted by fermentation was smaller than that of the WCSPs, making them more easily absorbed and utilized. At a concentration of 5 g/L, the FCSPs' capacity to scavenge the DPPH·, ABTS+·, OH·, and O2-· radicals was greater than the WCSPs' capacity by 10.09%, 14.40%, 49.93%, and 12.86%, respectively. Moreover, C. elegans treated with FCSPs exhibited higher antioxidant enzyme activities and a lower accumulation of malonaldehyde. By inhibiting the expression of the pro-aging genes daf-2 and age-1, and upregulating the expression of the antiaging genes daf-16, sod-3, skn-1, and gcs-1 in the insulin/insulin-like growth factor-1 (IIS) signaling pathway, the FCSPs could effectively enhance stress tolerance and delay C. elegans aging. The lifespan of C. elegans in the FCSPs group was 5.91% higher than that of the WCSPs group. In conclusion, FCSPs exert better antioxidant and antiaging effects than WCSPs, which can act as a potential functional ingredient or supplement in food.


Assuntos
Proteínas de Caenorhabditis elegans , Coix , Animais , Humanos , Lactente , Caenorhabditis elegans/fisiologia , Antioxidantes/metabolismo , Coix/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estresse Oxidativo , Longevidade , Polissacarídeos/metabolismo , Sementes/metabolismo , Fatores de Transcrição Forkhead/metabolismo
13.
Chem Commun (Camb) ; 59(26): 3842-3845, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36883606

RESUMO

In this study, polyacrylamide gel (PAAG) was successfully used as a new embedding medium to provide the more effective maintenance of biological tissues during the sectioning process, enhancing the tissue imaging of metabolites via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, PAAG, agarose, gelatin, optimal cutting temperature compound (OCT), and ice media were used to embed rat liver and Atlantic salmon (Salmo salar) eyeball samples. These embedded tissues were then sectioned into thin slices and thaw-mounted on conductive microscope glass slides for MALDI-MSI detection to evaluate the embedding effects. The results showed that PAAG embedding has characteristics superior to those of commonly-used embedding media (e.g., agarose, gelatin, OCT, and ice) with the advantages of one-step operation without heating, a better performance of morphology maintenance, the absence of PAAG polymer-ion-related interference below m/z 2000, and the more efficient in situ ionization of metabolites, providing a significant enhancement of both the numbers and intensities of the metabolite ion signals. Our study demonstrates the potential of PAAG embedding as a standard practice for metabolite MALDI tissue imaging, which will lead to an expanded application scope of MALDI-MSI.


Assuntos
Gelatina , alfa 2-Macroglobulinas Associadas à Gravidez , Ratos , Animais , Gravidez , Feminino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Gelo , Sefarose
14.
Commun Biol ; 6(1): 931, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697020

RESUMO

The transition from deep dormancy to seed germination is essential for the life cycle of plants, but how this process occurs in the gymnosperm Chinese yew (Taxus chinensis var mairei), the natural source of the anticancer drug paclitaxel, remains unclear. Herein, we analyse the transcriptome, proteome, spatial metabolome, and spatial lipidome of the Chinese yew and present the multi-omics profiles of dormant and germinating seeds. Our results show that abscisic acid and gibberellic acid 12 homoeostasis is closely associated with gene transcription and protein translation, and the balance between these phytohormones thereby determines if seeds remain dormant or germinate. We find that an energy supply of carbohydrates from glycolysis and the TCA cycle feed into the pentose phosphate pathway during seed germination, and energy supplied from lipids are mainly derived from the lipolysis of triacylglycerols. Using mass spectrometry imaging, we demonstrate that the spatial distribution of plant hormones and phospholipids has a remarkable influence on embryo development. We also provide an atlas of the spatial distribution of paclitaxel C in Chinese yew seeds for the first time. The data from this study enable exploration of the germination mechanism of Chinese yew seeds across several omics levels.


Assuntos
Taxus , Taxus/genética , Germinação , Multiômica , Sementes , Cycadopsida
15.
J Agric Food Chem ; 71(26): 10190-10202, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37318082

RESUMO

Herbicide-resistant soybeans are among the most widely planted transgenic crops. The in situ evaluation of spatial lipidomics in transgenic and non-transgenic soybeans is important for directly assessing the unintended effects of exogenous gene introduction. In this study, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI)-based non-targeted analytical strategies were used for the first time for in situ detection and imaging of endogenous lipid distributions in transgenic (EPSPS and PAT genes) herbicide-resistant soybean (Glycine max Merrill) (S4003.14) and non-transgenic soybean (JACK) seeds. Statistical analysis revealed significant differences in lipids between S4003.14 and JACK seeds. The variable importance of projection analysis further revealed that 18 identified lipids, including six phosphatidylcholines (PCs), four phosphatidylethanolamines (PEs), five triacylglycerols (TAGs), and three cytidine diphosphate-diacylglycerols (CDP-DAGs), had the strongest differential expression between S4003.14 and JACK seeds. Among those, the upregulated expressions of PC(P-36:1), PC(36:2), PC(P-36:0), PC(37:5), PE(40:2), TAG(52:1), TAG(55:5), and CDP-DAG(37:2) and the downregulated expressions of PC (36:1), TAG(43:0), and three PEs (i.e., PE(P-38:1), PE(P-38:0), and PE(P-40:3)) were successfully found in the S4003.14 seeds, compared to these lipids detected in the JACK seeds. Meanwhile, the lipids of PC (44:8), CDP-DAG(38:0), and CDP-DAG(42:0) were uniquely detected in the S4003.14 soybean seeds, and TAG(45:2) and TAG(57:10) were detected as the unique lipids in the JACK seeds. The heterogeneous distribution of these lipids in the soybean seeds was also clearly visualized using MALDI-MSI. MSI results showed that lipid expression was significantly up/downregulated in S4003.14 seeds, compared to that in JACK seeds. This study improves our understanding of the unintended effects of herbicide-resistant EPSPS and PAT gene transfers on spatial lipidomes in soybean seeds and enables the continued progression of MALDI-MSI as an emerging, reliable, and rapid molecular imaging tool for evaluating unintended effects in transgenic plants.


Assuntos
Glycine max , Lipidômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Glycine max/genética , Glycine max/química , Sementes/química , Fosfatidilcolinas/análise , Lasers
16.
Int J Biol Macromol ; 214: 212-219, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35709871

RESUMO

A novel nanofiber material incorporating hyaluronic acid (HA), crude huangshui polysaccharide (cHSP) and polyvinyl alcohol (PVA) were prepared to obtain dry facial masks (PVA/HA/cHSP) via electrospinning. The facial mask was characterized by scanning electron microscopy (SEM), water absorption and retention evaluation, in vitro release study, DPPH and hydroxyl free radical scavenging measurements, red blood cell hemolysis and chick embryo chorioallantoic membrane assay. The results suggested that the fiber mask was densely homogeneous, uniform and well distributed with a diameter <260 nm. Meanwhile, the water absorption rate was >300 %, DPPH and hydroxyl free radical half-inhibitory concentrations of cHSP aqueous solution scavenging were 0.2781 and 1.029 mg/mL, respectively. The PVA/HA/cHSP could retain the antioxidant capacity of cHSP, possessing simultaneous excellent moisture retention and oxidation resistance. Importantly, the mucous membrane irritation experiment indicated that it was mild and safe.


Assuntos
Nanofibras , Animais , Antioxidantes/farmacologia , Embrião de Galinha , Ácido Hialurônico/química , Nanofibras/química , Polissacarídeos/farmacologia , Álcool de Polivinil/química , Água
17.
ACS Omega ; 7(2): 2304-2315, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071918

RESUMO

Yudong (YD) 7 reservoir in the Yingmaili area of Tarim Oilfield is one of the key areas of oil and gas exploration in the Tarim Basin. However, due to the serious plugging problem caused by solid phase precipitation particles such as wax and paraffin, it is necessary to study the well flow phase behavior and solid phase precipitation law of typical high-production wells in this block to obtain the phase enveloping line and provide theoretical support for preventing solid phase precipitation of formation crude oil. In this study, the PVT tester and the self-designed microscopic solid deposition tester are used to obtain the phase enveloping line of formation crude oil, and the change law of the "gas-liquid-solid" phase behavior when the formation crude oil changes with temperature and pressure is observed. The morphological process of solid precipitation is recorded and analyzed through a microscopic visualization window. Finally, the solid phase precipitation point of formation crude oil is verified using a laser solid phase deposition tester. The experimental results show that under atmospheric pressure, the solid phase precipitation temperature point of surface crude oil is 34.05 °C, the maximum instantaneous precipitation is 0.01178%, and the maximum cumulative precipitation is 8.34%. The solid phase precipitation point of formation crude oil changes under different temperatures and pressures. Under different pressures and temperatures, it shows multiphase changes such as liquid-solid, liquid phase, gas-liquid-solid, gas-liquid, and gas phases. Limited by equipment, we can only observe the first four phase behaviors in the laboratory. In the process of solid phase precipitation, formation crude oil shows a fine needle shape at the initial stage and finally adhesions and aggregations in the form of an increasing crystal nucleus as the center, thus blocking the formation or wellbore. Combined with the analysis of production data, it can be seen that there is a solid precipitation problem in well YD 702 over 1200 m in the wellbore and the solid phase precipitation problem from the wellbore to the surface pipeline. This study provides theoretical support for preventing solid phase precipitation in the YD 7 reservoir and provides a reference for other oil fields with solid phase precipitation blocking problems.

18.
ACS Omega ; 6(44): 29360-29369, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778609

RESUMO

Research shows that the surface shape of rotary liquid depends on the rotation mode. Mode A is that when the container wall rotates the liquid, the rotating liquid surface is paraboloid. Mode B is that when the rotor in the center of the container rotates the liquid, the rotating liquid surface is vortex. Based on the paraboloid formed by the mode A, the identity between the liquid level parameter and the wall slope K (K ≠ 0) is derived. When K → ∞, with the increase of the container angular spin rate, the liquid level parameter changes are infinite, the liquid level change and volume relationship are fixed. When K > 0, the container is a cylinder with a large upper part and a small lower part and the liquid level parameter changes are limited, and the limit ratio between the liquid level parameters is + 1. In addition, through the vortex experiment by the mode B, it is concluded that the vortex curve can be regarded as composed of three parabolas: the center triggering part, the rising part, and the edge attenuation part. Different from the mode A, the liquid level change and volume relationship caused by the vortex formed by the mode B are both variables. According to the experimental results, the influences of container inner diameter, initial liquid level, rotor size, and rotor speed on the vortex characteristics are discussed in detail. At the same time, based on the experiment, the liquid level change and volume relationship caused by the formation of the vortex are deduced under the ideal condition when a stable liquid surface is formed by the vortex.

19.
ACS Omega ; 6(30): 19378-19385, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34368524

RESUMO

The surface of a tight reservoir appears to be oil-wet or mixed-type wet upon soaking in crude oil for a long time, and the yield decreases rapidly after fracturing under the influence of capillary force. The oil sweep efficiency affected by many factors such as formation water dilution, salinity, crude oil type, temperature, and pressure can be enhanced by adding nanosurfactants into the fracturing fluid, so it is necessary to study the influence of different factors on the spontaneous imbibition replacement efficiency of nanosurfactants. In this study, the basic properties of nanosurfactants such as particle size, oil-water interfacial tension (IFT), and the wetting modification effect were tested, and the influence of surfactant type, concentration, temperature, and pressure on imbibition replacement efficiency was studied. The main conclusions are as follows: (1) The particle size of the nanosurfactant that was synthesized by a microemulsion method is 12-21 nm, which indicated good injectability in tight cores. Moreover, the IFT values between the crude oil and five kinds of 0.30 wt % nanosurfactants were all lower than 0.15 mN/m, and nanosurfactant C had the best wetting modification effect with increasing the contact angle by 100.30°. (2) The type and concentration of surfactant have a certain influence on imbibition replacement efficiency, and appropriate concentration of anionic nanosurfactant is beneficial to enhancing the imbibition replacement efficiency. The imbibition replacement efficiency of 0.30 wt % anionic surfactant C solution is higher than that of nonionic and cationic surfactant solutions, and the imbibition replacement efficiency is as high as 33.386% under NTP. (3) The nanosurfactant in brine is prone to forming fine emulsified oil droplets with crude oil and activates the oil droplets in the small pores to enhance the imbibition replacement efficiency. The crude oil type, temperature, and pressure can influence imbibition replacement efficiency, and the influence of crude oil type and temperature is greater than that of pressure. This work further studies the influencing factors of imbibition replacement efficiency.

20.
Chem Commun (Camb) ; 57(82): 10707-10710, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34542115

RESUMO

Herein, copper adhesive tape attached to the reverse side of a glass slide was developed as a new method to achieve protein in situ detection and imaging in a formalin fixed paraffin-embedded (FFPE) tissue section on a non-conductive glass slide by MALDI-MSI. The use of this new method led to 223 protein ions being imaged from a rat brain FFPE-tissue section on a non-conductive glass slide by MALDI-MS, compared to only 145 and 163 protein ions detected on an ITO glass slide and an AnchorChip target plate, respectively. This new method has great potential to become standard practice for protein MALDI-imaging in FFPE-tissue sections on non-conductive glass slides.


Assuntos
Cobre/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fixação de Tecidos/métodos , Animais , Encéfalo , Diagnóstico por Imagem , Condutividade Elétrica , Humanos , Proteínas/química , Ratos , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa