Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 30(3): 1006-1017, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35121107

RESUMO

The correct duplication and transfer of genetic material to daughter cells is the major event of cell division. Dysfunction of DNA replication or chromosome segregation presents challenges in cancer initiation and development as well as opportunities for cancer treatment. Cyclic GMP-AMP synthase (cGAS) of the innate immune system detects cytoplasmic DNA and mediates downstream immune responses through the molecule stimulator of interferon genes (STING). However, how cytosolic DNA sensor cGAS participates in guaranteeing accurate cell division and preventing tumorigenesis is still unclear. Recent evidence indicates malfunction of cGAS/STING pathway in cancer progression. Cell cycle-targeted therapy synergizes with immunotherapy via cGAS/STING activation, leading to promising therapeutic benefit. Here, we review the interactions between cell cycle regulation and cGAS/STING signaling, thus enabling us to understand the role of cGAS/STING in cancer initiation, development, and treatment.


Assuntos
Proteínas de Membrana , Neoplasias , Ciclo Celular/genética , Divisão Celular , DNA/metabolismo , Humanos , Imunidade Inata , Imunoterapia , Proteínas de Membrana/metabolismo , Neoplasias/genética , Neoplasias/terapia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
2.
Clin Transl Oncol ; 25(6): 1805-1820, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36899123

RESUMO

PURPOSE: Nowadays, the oxidative phosphorylation (OXPHOS) correlated with leukemogenesis and treatment response is extensive. Thus, exploration of novel approaches in disrupting OXPHOS in AML is urgently needed. MATERIALS AND METHODS: Bioinformatical analysis of TCGA AML dataset was performed to identify the molecular signaling of OXPHOS. The OXPHOS level was measured through a Seahorse XFe96 cell metabolic analyzer. Flow cytometry was applied to measure mitochondrial status. Real-time qPCR and western blot were used to analyze the expression of mitochondrial or inflammatory factors. MLL-AF9-induced leukemic mice were conducted to measure the anti-leukemia effect of chidamide. RESULTS: Here, we reported that AML patients with high OXPHOS level were in a poor prognosis, which was associated with high expression of HDAC1/3 (TCGA). Inhibition of HDAC1/3 by chidamide inhibited cell proliferation and induced apoptotic cell death in AML cells. Intriguingly, chidamide could disrupt mitochondrial OXPHOS as assessed by inducing mitochondrial superoxide and reducing oxygen consumption rate, as well as decreasing mitochondrial ATP production. We also observed that chidamide augmented HK1 expression, while glycolysis inhibitor 2-DG could reduce the elevation of HK1 and improve the sensitivity of AML cells exposed to chidamide. Furthermore, HDAC3 was correlated with hyperinflammatory status, while chidamide could downregulate the inflammatory signaling in AML. Notably, chidamide eradicated leukemic cells in vivo and prolonged the survival time of MLL-AF9-induced AML mice. CONCLUSION: Chidamide disrupted mitochondrial OXPHOS, promoted cell apoptosis and reduced inflammation in AML cells. These findings exhibited a novel mechanism that targeting OXPHOS would be a novel strategy for AML treatment.


Assuntos
Leucemia Mieloide Aguda , Animais , Camundongos , Leucemia Mieloide Aguda/tratamento farmacológico , Fosforilação Oxidativa , Aminopiridinas/farmacologia , Benzamidas , Apoptose , Linhagem Celular Tumoral
3.
Signal Transduct Target Ther ; 8(1): 391, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777506

RESUMO

Immunotherapy is a revolutionized therapeutic strategy for tumor treatment attributing to the rapid development of genomics and immunology, and immune checkpoint inhibitors have successfully achieved responses in numbers of tumor types, including hematopoietic malignancy. However, acute myeloid leukemia (AML) is a heterogeneous disease and there is still a lack of systematic demonstration to apply immunotherapy in AML based on PD-1/PD-L1 blockage. Thus, the identification of molecules that drive tumor immunosuppression and stratify patients according to the benefit from immune checkpoint inhibitors is urgently needed. Here, we reported that STAT5 was highly expressed in the AML cohort and activated the promoter of glycolytic genes to promote glycolysis in AML cells. As a result, the increased-lactate accumulation promoted E3BP nuclear translocation and facilitated histone lactylation, ultimately inducing PD-L1 transcription. Immune checkpoint inhibitor could block the interaction of PD-1/PD-L1 and reactive CD8+ T cells in the microenvironment when co-culture with STAT5 constitutively activated AML cells. Clinically, lactate accumulation in bone marrow was positively correlated with STAT5 as well as PD-L1 expression in newly diagnosed AML patients. Therefore, we have illustrated a STAT5-lactate-PD-L1 network in AML progression, which demonstrates that AML patients with STAT5 induced-exuberant glycolysis and lactate accumulation may be benefited from PD-1/PD-L-1-based immunotherapy.


Assuntos
Histonas , Leucemia Mieloide Aguda , Humanos , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/uso terapêutico , Fator de Transcrição STAT5/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Imunossupressão , Lactatos/uso terapêutico , Microambiente Tumoral
4.
Cell Prolif ; 55(12): e13331, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36124714

RESUMO

OBJECTIVES: Mutant C/EBPα p30 (mp30), the product of C/EBPα double mutations (DM), lacks transactivation domain 1 and has C-terminal loss-of-function mutation. Acute myeloid leukaemia (AML) patients harbouring C/EBPα DM could be classified as a distinct subgroup with favourable prognosis. However, the underlying mechanism remains elusive. MATERIALS AND METHODS: Autophagy regulated by mp30 was detected by western blot and immunofluorescence. Immune infiltration analysis and GSEA were performed to investigate autophagic and inflammatory status of AML patients from the GSE14468 cohort. Flow cytometry was applied to analyse T cell activation. RESULTS: Mp30 inhibited autophagy by suppressing nucleus translocation of NF-κB. Autophagy-associated secretion of IL-1ß was decreased in mp30-overexpressed AML cells. Bioinformatic analysis revealed that inflammatory status was attenuated, while CD8+ T cell infiltration was upregulated in C/EBPα DM AML patients. Consistently, the proportion of CD8+ CD69+ T cells in peripheral blood mononuclear cells (PBMCs) was upregulated after co-culture with mp30 AML cell conditional culture medium. Knock-out of IL-1ß in AML cells also enhanced CD8+ T cell activation. Accordingly, IL-1ß expression was significantly reduced in the bone marrow (BM) cells of C/EBPα DM AML patients compared to the wildtype, while the CD8+ CD69+ T cell proportion was specifically elevated. CONCLUSIONS: C/EBPα DM alleviates immunosuppression of CD8+ T cells by inhibiting the autophagy-associated secretion of IL-1ß, which elucidated that repression of autophagy-related inflammatory response in AML patients might achieve a favourable clinical benefit.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Leucemia Mieloide Aguda , Humanos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Leucócitos Mononucleares/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Autofagia , Terapia de Imunossupressão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa