Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 182: 105053, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249643

RESUMO

Deciphering the molecular mechanisms of insect resistance to Bacillus thuringiensis (Bt) based biotechnology products including Bt sprays and Bt crops is critical for the long-term application of Bt technology. Previously, we established that down-regulation of the ABC transporter gene PxABCG1, trans-regulated by the MAPK signaling pathway, contributed to high-level resistance to Bt Cry1Ac toxin in diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulatory mechanism was unknown. Herein, we identified putative binding sites (PBSs) of the transcription factor (TF) POUM1 in the PxABCG1 promoter and used a dual-luciferase reporter assay (DLRA) and yeast one-hybrid (Y1H) assay to reveal that POUM1 activates PxABCG1 via interaction with one of these sites. The expression of POUM1 was significantly decreased in the midgut tissue of Cry1Ac-resistant P. xylostella strains compared to a Cry1Ac-susceptible P. xylostella strain. Silencing of POUM1 expression resulted in reduced expression of the PxABCG1 gene and an increase in larval tolerance to Bt Cry1Ac toxin in the Cry1Ac-susceptible P. xylostella strain. Furthermore, silencing of PxMAP4K4 expression increased the expression of both POUM1 and PxABCG1 genes in the Cry1Ac-resistant P. xylostella strain. These results indicate that the POUM1 induces PxABCG1 expression, while the activated MAPK cascade represses PxABCG1 expression thus reducing Cry1Ac susceptibility in P. xylostella. This result deepens our understanding of the transcriptional regulatory mechanism of midgut Cry receptor genes and the molecular basis of the evolution of Bt resistance in insects.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Larva/genética , Larva/metabolismo , Mariposas/genética , Mariposas/metabolismo , Fatores de Transcrição/genética
2.
Appl Environ Microbiol ; 87(13): e0046621, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893113

RESUMO

Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that mitogen-activated protein kinase (MAPK)-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Here, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins. IMPORTANCE The transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella. Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mariposas , Proteínas Proto-Oncogênicas c-jun/genética , Animais , Larva/genética , Larva/metabolismo , Mariposas/genética , Mariposas/metabolismo
3.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198929

RESUMO

The molecular mechanisms of insect resistance to Cry toxins generated from the bacterium Bacillus thuringiensis (Bt) urgently need to be elucidated to enable the improvement and sustainability of Bt-based products. Although downregulation of the expression of midgut receptor genes is a pivotal mechanism of insect resistance to Bt Cry toxins, the underlying transcriptional regulation of these genes remains elusive. Herein, we unraveled the regulatory mechanism of the downregulation of the ABC transporter gene PxABCG1 (also called Pxwhite), a functional midgut receptor of the Bt Cry1Ac toxin in Plutella xylostella. The PxABCG1 promoters of Cry1Ac-susceptible and Cry1Ac-resistant strains were cloned and analyzed, and they showed clear differences in activity. Subsequently, a dual-luciferase reporter assay, a yeast one-hybrid (Y1H) assay, and RNA interference (RNAi) experiments demonstrated that a cis-mutation in a binding site of the Hox transcription factor Antennapedia (Antp) decreased the promoter activity of the resistant strain and eliminated the binding and regulation of Antp, thereby enhancing the resistance of P. xylostella to the Cry1Ac toxin. These results advance our knowledge of the roles of cis- and trans-regulatory variations in the regulation of midgut Cry receptor genes and the evolution of Bt resistance, contributing to a more complete understanding of the Bt resistance mechanism.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Toxinas de Bacillus thuringiensis/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Receptores de Superfície Celular/genética , Animais , Bacillus thuringiensis/genética , Endotoxinas/genética , Lepidópteros/efeitos dos fármacos , Lepidópteros/genética , Mutação/genética , Regiões Promotoras Genéticas/genética
4.
Plants (Basel) ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891257

RESUMO

The rapid restoration and renewal of the moso bamboo logging zone after strip logging has emerged as a key research area, particularly regarding whether nutrient accumulation and utilization in reserve zones can aid in the restoration and regeneration of the logging zone. In this study, a dynamic 15N isotope tracking experiment was conducted by injecting labeled urea fertilizer into bamboo culms. Logging zones and reserve zones of 6 m, 8 m, and 10 m widths were established. The conventional selective logging treatment served as a control (Con). Measurements were taken in May and October to assess the differences in nitrogen accumulation ability, utilization rates, and nutrient content across different organs in bamboo forests at different growth stages and under different treatments. Principal component analysis was conducted to evaluate and determine the importance of each indicator and strip logging treatment comprehensively. The results showed that various bamboo organs exhibited higher nitrogen accumulation and utilization rates during the peak growth period compared to the late growth period. Leaves had the highest nitrogen accumulation and utilization rates than the other organs. The average C content in various bamboo organs under different logging treatments exhibited subtle differences, irrespective of variation in logging width treatments. Bamboo culm exhibited the highest carbon accumulation. The C content in various bamboo organs was higher during the peak growth period than in the late growth period. The nitrogen content peaked in the leaves during the two growth stages and was significantly higher compared to the other organs. Most bamboo organs in the logging zones exhibited relatively higher nitrogen content than in the reserve zone and Con group. The P content was highest in bamboo leaves compared with other organs across the different strip logging treatments. Principal component analysis revealed relatively high absolute values of the coefficients for the C content, bamboo stump C content, and culm Ndff%. Log8 and Res10 zones had the highest comprehensive evaluation scores, indicating that Log8 and Res10 had the best effect on the promotion of nitrogen utilization and nutrient accumulation in various organs of moso bamboo.

5.
Mitochondrial DNA B Resour ; 5(1): 790-791, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33366752

RESUMO

Bambusa pervariabilis is mostly produced in south China; usually cultivated on the banks of the rivers and near villages. We determined the complete chloroplast (cp) genome sequence of B. pervariabilis using Illumina sequencing data. The complete cp sequence is 139,393 bp, include large single-copy (LSC) region of 82,969 bp, small single-copy (SSC) region of 12,874 bp, a pair of invert repeats (IR) regions of 21,775 bp. Plastid genome contain 132 genes, 85 protein-coding genes, 39 tRNA genes, and 8 rRNA genes. Phylogenetic analysis based on 28 cp genomes indicates that B. pervariabilis is closely related to Bambusa multiplex in Bambusodae.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa